This paper proposes an efficient method for the joint localization of sources and estimation of the covariance of their signals. In practice, such an estimation is useful to study correlated sources existing, for instance, in the presence of spatially distributed sources or reflections, but is confronted with the challenge of computational complexity due to a large number of required estimates. The proposed method is called covariance matrix fitting by orthogonal least squares. It is based on a greedy dictionary based approach exploiting the orthogonal least squares algorithm in order to reduce the computational complexity of the estimation. Compared to existing methods for sources correlation matrix estimation, its lower computational complexity allows one to deal with high dimensional problems (i.e., fine discretization of the source space) and to explore large regions of possible sources positions. As shown by numerical results, it is more accurate than existing methods and does not require the tuning of any regularization parameter. Experiments in an anechoic chamber involving correlated sources or reflectors show the ability of the method to locate and identify physical and mirror sources as well.

1.
H.
Krim
and
M.
Viberg
, “
Two decades of array signal processing research: The parametric approach
,”
IEEE Signal Process. Mag.
13
(
4
),
67
94
(
1996
).
2.
J.
Antoni
,
T. L.
Magueresse
,
Q.
Leclère
, and
P.
Simard
, “
Sparse acoustical holography from iterated Bayesian focusing
,”
J. Sound Vib.
446
,
289
325
(
2019
).
3.
N.
Chu
,
A.
Mohammad-Djafari
, and
J.
Picheral
, “
Robust Bayesian super-resolution approach via sparsity enforcing a priori for near-field aeroacoustic source imaging
,”
J. Sound Vib.
332
(
18
),
4369
4389
(
2013
).
4.
A.
Xenaki
,
P.
Gerstoft
, and
K.
Mosegaard
, “
Compressive beamforming
,”
J. Acoust. Soc. Am.
136
(
1
),
260
271
(
2014
).
5.
E.
Fernandez-Grande
and
L.
Daudet
, “
Compressive acoustic holography with block-sparse regularization
,”
J. Acoust. Soc. Am.
143
(
6
),
3737
3746
(
2018
).
6.
G.
Chardon
,
L.
Daudet
,
A.
Peillot
,
F.
Ollivier
,
N.
Bertin
, and
R.
Gribonval
, “
Near-field acoustic holography using sparse regularization and compressive sampling principles
,”
J. Acoust. Soc. Am.
132
(
3
),
1521
1534
(
2012
).
7.
D.
Malioutov
,
M.
Cetin
, and
A. S.
Willsky
, “
A sparse signal reconstruction perspective for source localization with sensor arrays
,”
IEEE Trans. Signal Process.
53
(
8
),
3010
3022
(
2005
).
8.
A.
Das
,
W. S.
Hodgkiss
, and
P.
Gerstoft
, “
Coherent multipath direction-of-arrival resolution using compressed sensing
,”
IEEE J. Ocean. Eng.
42
(
2
),
494
505
(
2017
).
9.
A.
Das
, “
Deterministic and Bayesian Sparse signal processing algorithms for coherent multipath directions-of-arrival (DOAS) estimation
,”
IEEE J. Ocean. Eng.
44
,
1150
1164
(
2018
).
10.
J.
Zheng
and
M.
Kaveh
, “
Sparse spatial spectral estimation: A covariance fitting algorithm, performance and regularization
,”
IEEE Trans. Signal Process.
61
(
11
),
2767
2777
(
2013
).
11.
T.
Yardibi
,
J.
Li
,
P.
Stoica
,
N. S.
Zawodny
, and
L. N.
Cattafesta
, “
A covariance fitting approach for correlated acoustic source mapping
,”
J. Acoust. Soc. Am.
127
(
5
),
2920
2931
(
2010
).
12.
S.
Chen
,
S. A.
Billings
, and
W.
Luo
, “
Orthogonal least squares methods and their application to non-linear system identification
,”
Int. J. Control
50
(
5
),
1873
1896
(
1989
).
13.
Y. C.
Pati
,
R.
Rezaiifar
, and
P. S.
Krishnaprasad
, “
Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition
,” in
Proceedings of the 27th Annual Asilomar Conference on Signals, Systems, and Computers
(
1993
), pp.
40
44
.
14.
J. A.
Tropp
and
A. C.
Gilbert
, “
Signal recovery from random measurements via orthogonal matching pursuit
,”
IEEE Trans. Inf. Theory
53
(
12
),
4655
4666
(
2007
).
15.
C.
Soussen
,
R.
Gribonval
,
J.
Idier
, and
C.
Herzet
, “
Joint K-step analysis of orthogonal matching pursuit and orthogonal least squares
,”
IEEE Trans. Inf. Theory
59
(
5
),
3158
3174
(
2013
).
16.
J. W.
Paik
,
W.
Hong
,
J.-K.
Ahn
, and
J.-H.
Lee
, “
Statistics on noise covariance matrix for covariance fitting-based compressive sensing direction-of-arrival estimation algorithm: For use with optimization via regularization
,”
J. Acoust. Soc. Am.
143
(
6
),
3883
3890
(
2018
).
17.
T.
Yardibi
,
J.
Li
,
P.
Stoica
, and
L. N.
Cattafesta
, “
Sparsity constrained deconvolution approaches for acoustic source mapping
,”
J. Acoust. Soc. Am.
123
(
5
),
2631
2642
(
2008
).
18.
W.
Xiong
,
J.
Picheral
,
S.
Marcos
, and
G.
Chardon
, “
Sparsity-based localization of spatially coherent distributed sources
,” in
2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
, Shangai, China (
2016
).
19.
M.
Grant
and
S.
Boyd
, “
CVX: Matlab software for disciplined convex programming, version 2.1
,” http://cvxr.com/cvx (
2014
).
20.
M.
Grant
and
S.
Boyd
, “
Graph implementations for nonsmooth convex programs
,” in
Recent Advances in Learning and Control
, edited by
V.
Blondel
,
S.
Boyd
, and
H.
Kimura
, Lecture Notes in Control and Information Sciences (
Springer-Verlag
,
Berlin
,
2008
), pp.
95
110
.
21.
Y.
Li
,
M.
Li
,
D.
Yang
, and
C.
Gao
, “
Research of the improved mapping of acoustic correlated sources method
,”
Appl. Acoust.
145
,
290
304
(
2019
).
22.
J. A.
Tropp
, “
Greed is good: Algorithmic results for sparse approximation
,”
IEEE Trans. Inf. Theory
50
(
10
),
2231
2242
(
2004
).
23.
A.
Peillot
,
F.
Ollivier
,
G.
Chardon
, and
L.
Daudet
, “
Localization and identification of sound sources using ‘compressive sampling’ techniques
,” in
18th International Congress on Sound and Vibration
, Rio de Janeiro, Brazil (
2011
).
24.
T.
Padois
and
A.
Berry
, “
Orthogonal matching pursuit applied to the deconvolution approach for the mapping of acoustic sources inverse problem
,”
J. Acoust. Soc. Am.
138
(
6
),
3678
3685
(
2015
).
25.
Y. C.
Eldar
,
P.
Kuppinger
, and
H.
Bolcskei
, “
Block-sparse signals: Uncertainty relations and efficient recovery
,”
IEEE Trans. Signal Process.
58
(
6
),
3042
3054
(
2010
).
26.
G.
Chardon
, “
A block-sparse MUSIC algorithm for the localization and the identification of directive sources
,” in
2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
, Florence, Italy (
2014
), pp.
3953
3957
.
27.
M. R.
Bai
,
C.
Chung
, and
S.-S.
Lan
, “
Iterative algorithm for solving acoustic source characterization problems under block sparsity constraints
,”
J. Acoust. Soc. Am.
143
(
6
),
3747
3757
(
2018
).
28.
V.
Duval
and
G.
Peyré
, “
Sparse regularization on thin grids I: The lasso
,”
Inverse Probl.
33
(
5
),
055008
(
2017
).
You do not currently have access to this content.