Acoustic recordings of artillery shots feature the signatures of the shot's muzzle, projectile, and impact waves modulated by the environment. This study aims at improving the sensing of such shots using a set of synchronous acoustic sensors distributed over a 1 km2 area. It uses the time matching approach, which is based on finding the best match between the observed and pre-calculated times of arrivals of the various waves at each sensor. The pre-calculations introduced here account for the complex acoustic source with a 6-degrees-of-freedom ballistic trajectory model, and for the propagation channel with a wavefront-tracking acoustic model including meteorological and terrain effects. The approach is demonstrated using three recordings of artillery shots measured by sensors which are more than 10 km from the point of fire and distributed at several hundred meters away from and around the target points. Using only the impact wave, it locates the impact point with an error of a few meters. Processing the muzzle and impact and projectile waves enables the estimation of the weapon's position with a 1 km error. Sensitivities of the localization method to various factors such as the number of sensors, atmospheric data, and the number of processed waves are discussed.

1.
H.
Bateman
, “
Mathematical theory of sound ranging
,” Monthly Weather Review (January), 4–11 (
1918
).
2.
E.
Esclangon
,
L'acoustique des Canons et des Projectiles
(
Gauthier-Villars
,
Paris
,
1925
), p.
388
.
3.
T.
Damarla
,
Battlefield Acoustics
(
Springer International Publishing
,
New York
,
2015
), p.
262
.
4.
A.
Lemer
and
F.
Ywanne
, “
Acoustic/seismic ground sensors for detection, localization and classification on the battlefield
,” in
Battlefield Acoustic Sensing for ISR Applications
, RTO-MP-SET-107 (
US Army Research Laboratory
,
Adelphi, MD
,
2006
), pp.
17-1
17-12
.
5.
B. G.
Ferguson
,
L. G.
Criswick
, and
K. W.
Lo
, “
Locating far-field impulsive sound sources in air by triangulation
,”
J. Acoust. Soc. Am.
111
(
1
),
104
116
(
2002
).
6.
A. A.
Thompson
 III
and
G. L.
Durfee
, “
Techniques for evaluating line of bearing (LOB) systems
,” Ballistic Research Laboratory, Aberdeen Proving Ground, MD (
1992
).
7.
B. G.
Ferguson
, “
Variability in the passive ranging of acoustic sources in air using a wavefront curvature technique
,”
J. Acoust. Soc. Am.
108
(
4
),
1535
1544
(
2000
).
8.
D.
Grasing
and
B.
Ellwood
, “
Development of acoustic sniper localization methods and models
,”
Proc. SPIE
7693
,
769312
(
2010
).
9.
K. W.
Lo
, “
Curvilinear trajectory estimation of a supersonic bullet using ballistic shock wave arrivals at asynchronous acoustic sensor nodes
,”
J. Acoust. Soc. Am.
141
(
6
),
4543
4555
(
2017
).
10.
S.
Cheinet
,
M.
Cosnefroy
,
F.
Königstein
,
W.
Rickert
,
M.
Christoph
,
S. L.
Collier
,
A.
Dagallier
,
L.
Ehrhardt
,
V. E.
Ostashev
,
A.
Stefanovic
,
T.
Wessling
, and
D. K.
Wilson
, “
An experimental study of the atmospheric-driven variability of impulse sounds
,”
J. Acoust. Soc. Am.
144
(
2
),
822
840
(
2018
).
11.
H. E.
Bass
,
L.
Sutherland
,
J.
Piercy
, and
L. B.
Evans
, “
Absorption of sound by the atmosphere
,” in
Physical Acoustics: Principles and Methods
, Volume 17 (A85-28596 12-71) (
Academic Press
,
New York
,
1984
), pp.
145
232
.
12.
S.
Cheinet
and
T.
Broglin
, “
Sensitivity of shot detection and localization to environmental propagation
,”
Appl. Acoust.
93
,
97
105
(
2015
).
13.
S.
Cheinet
,
L.
Ehrhardt
,
T.
Broglin
, and
M.
Cosnefroy
, “
Time matching localization of impulse sounds in high-building, non-line-of-sight configurations
,”
Acta Acust. united Ac.
102
(
6
),
1118
1127
(
2016
).
14.
S.
Cheinet
,
L.
Ehrhardt
, and
T.
Broglin
, “
Impulse source localization in an urban environment: Time reversal versus time matching
,”
J. Acoust. Soc. Am.
139
(
1
),
128
140
(
2016
).
15.
J.
Millet
and
B.
Baligand
, “
Latest achievements in gunfire detection systems
,” in
Battlefield Acoustic Sensing for ISR Applications
, RTO-MP-SET-107 (
US Army Research Laboratory
,
Adelphi, MD
,
2006
), pp.
1
14
.
16.
V. E.
Ostashev
,
Acoustics in Moving Inhomogeneous Media
(
E&FN SPON
,
New York
,
1997
).
17.
A. D.
Pierce
,
Acoustics. An Introduction to its Physical Principles and Applications
, 3rd ed. (
Acoustical Society of America
,
Melville, NY
,
1981
), pp. xxiii+
642
.
18.
E. W.
Dijkstra
, “
A note on two problems in connection with graphs
,”
Numer. Math.
1
(
1
),
269
271
(
1959
).
19.
H.
Saito
, “
Travel times and ray paths of first arrival seismic waves: Computation method based on Huygens' principle
,” in
SEG Technical Program Expanded Abstracts 1989
(
Society of Exploration Geophysicists
,
Tulsa, OK
,
1989
), pp.
244
247
.
20.
T. J.
Moser
, “
Shortest path calculation of seismic rays
,”
Geophysics
56
(
1
),
59
67
(
1991
).
21.
P.
Podvin
and
I.
Lecomte
, “
Finite-difference computation of travel times in very contrasted velocity models: A massively parallel approach and its associated tools
,”
Geophys. J. Int.
105
(
1
),
271
284
(
1991
).
22.
J. E.
Vidale
, “
Finite-difference calculation of travel times
,”
Bull. Seismol. Soc. Am.
78
(
6
),
2062
2076
(
1988
).
23.
J. A.
Sethian
, “
A fast marching level set method for monotonically advancing fronts
,”
Proc. Natl. Acad. Sci.
93
(
4
),
1591
1595
(
1996
).
24.
J. A.
Sethian
and
A. B.
Vladimirsky
, “
Ordered upwind methods for static Hamilton-Jacobi equations: Theory and algorithms
,”
SIAM J. Numer. Anal.
41
(
1
),
325
363
(
2003
).
25.
A. M.
Popovici
and
J. A.
Sethian
, “
3D imaging using higher order Fast Marching travel times
,”
Geophysics
67
(
2
),
604
609
(
2002
).
26.
J. A.
Sethian
and
A. M.
Popovici
, “
3D travel time computation using the Fast Marching method
,”
Geophysics
64
(
2
),
516
523
(
1999
).
27.
Y.
Pailhas
and
Y.
Petillot
, “
Multi-dimensional Fast-Marching approach to wave propagation in heterogeneous multipath environment
,” in Proceedings of the Third Underwater Acoustics Conference and Exhibition
, Crete, Greece (June 21–26,
2015
), p.
153
.
28.
E.
Konukoglu
,
M.
Sermesant
,
O.
Clatz
,
J.-M.
Peyrat
,
H.
Delingette
, and
N.
Ayache
, “
A recursive anisotropic Fast Marching approach to reaction diffusion equation: Application to tumor growth modeling
,” in
Information Processing in Medical Imaging
, edited by
N.
Karssemeijer
and
B.
Lelieveldt
(
Springer
,
Berlin-Heidelberg
,
2007
), pp.
687
699
.
29.
L.
Yatziv
,
A.
Bartesaghi
, and
G.
Sapiro
, “
O(N) implementation of the fast marching algorithm
,”
J. Comput. Phys.
212
(
2
),
393
399
(
2006
).
30.
L.
Ehrhardt
,
S.
Cheinet
,
D.
Juvé
, and
P.
Blanc-Benon
, “
Evaluating a linearized Euler equations model for strong turbulence effects on sound propagation
,”
J. Acoust. Soc. Am.
133
(
1961
),
1922
1933
(
2013
).
31.
ISO 2533-1975
,
Standard Atmosphere, Corrected
(
ISO
,
Geneva, Switzerland
,
1978
).
32.
Y.
Noumir
,
A. Le
Guilcher
,
N.
Lardjane
,
R.
Monneau
, and
A.
Sarrazin
, “
A fast-marching like algorithm for geometrical shock dynamics
,”
J. Comput. Phys.
284
,
206
229
(
2015
).
33.
L.
Stano
,
J.
Wind
, and
H.-E.
de Bree
, “
Acoustic scoring and locating system for rockets, artillery & mortars
,” in
Wireless World Workshop (W3)
, edited by
D. C.
Dimitrova
,
K. C. H.
Blom
, and
N.
Meratnia
(
University of Twente, Centre for Telematics and Information Technology
,
Enschede, the Netherlands
,
2011
), pp.
1
8
.
34.
P.
Wey
,
D.
Corriveau
,
T. A.
Saitz
, and
W. D.
Ruijter
, “
BALCO 6/7-DoF trajectory model
,” in
Proceedings of the 29th International Symposium on Ballistics
,
Edenborough, Scotland
(May 9–13,
2016
), pp.
151
162
.
35.
National Imagery and Mapping Agency
, “
Department of Defense World Geodetic System 1984, Its definition and relationships with local geodetic systems
,” Technical Report 8350.2, 3rd ed. (
1984
).
36.
R. F.
Lieske
, “
Determination of aerodynamic drag and exterior ballistic trajectory simulation for the 155 mm, DPICM, M864 base-burn projectile
,”
Ballistic Research Laboratory
,
Aberdeen Proving Ground, MD
(
1989
).
37.
D. P.
Dee
,
S. M.
Uppala
,
A. J.
Simmons
,
P.
Berrisford
,
P.
Poli
,
S.
Kobayashi
,
U.
Andrae
,
M. A.
Balmaseda
,
G.
Balsamo
,
P.
Bauer
,
P.
Bechtold
,
A. C. M.
Beljaars
,
L.
van de Berg
,
J.
Bidlot
,
N.
Bormann
,
C.
Delsol
,
R.
Dragani
,
M.
Fuentes
,
A. J.
Geer
,
L.
Haimberger
,
S. B.
Healy
,
H.
Hersbach
,
E. V.
Hólm
,
L.
Isaksen
,
P.
Kållberg
,
M.
Köhler
,
M.
Matricardi
,
A. P.
McNally
,
B. M.
Monge-Sanz
,
J.-J.
Morcrette
,
B.-K.
Park
,
C.
Peubey
,
P.
de Rosnay
,
C.
Tavolato
,
J.-N.
Thépaut
, and
F.
Vitart
, “
The ERA-Interim reanalysis: Configuration and performance of the data assimilation system
,”
Q. J. R. Meteorol. Soc.
137
(
656
),
553
597
(
2011
).
38.
D. K.
Wilson
,
M. S.
Lewis
,
J. W.
Weatherly
, and
E. L.
Andreas
, “
Dependence of predictive skill for outdoor narrowband and broadband sound levels on the atmospheric representation
,”
Noise Control Eng. J.
56
(
6
),
465
477
(
2008
).
39.
D.
Valente
,
L. M.
Ronsse
,
L.
Pater
,
M. J.
White
,
R.
Serwy
,
E. T.
Nykaza
,
M. E.
Swearingen
, and
D. G.
Albert
, “
Blast noise characteristics as a function of distance for temperate and desert climates
,”
J. Acoust. Soc. Am.
132
(
1
),
216
227
(
2012
).
40.
L. M.
Ronsse
,
D.
Valente
,
E. T.
Nykaza
, and
M. J.
White
, “
Investigations of measured temperature and wind effects on outdoor sound propagation
,”
J. Acoust. Soc. Am.
132
(
3
),
1904
1904
(
2012
).
41.
R. B.
Stull
,
An Introduction to Boundary Layer Meteorology
(
Springer
,
Dordrecht, the Netherlands
,
1988
).
You do not currently have access to this content.