In this paper, an acoustic source localization method using the emerging technology of the deep neural network (DNN) is proposed. After the construction and training of the DNN, the capability of the DNN for source localization through a set of numerical simulations is verified. Next, experimental studies and demonstrations in a very shallow water tank with acoustic reflective walls are prepared, which enable the quick acquisition of a huge amount of experimental data for the training of a one-dimensional DNN-based source localization model. The development of the DNN-based source localization method and the corresponding numerical and experimental demonstration constitute the main contribution of this work. The associated performance is then evaluated at various frequencies. In particular, the localization results of the DNN are compared with readily available model-based localization methods, such as the conventional matched field processing method and the normal-mode based multiple signal classification method. The comparison shows that the proposed DNN approach is able to produce satisfactory accuracy in this reflective shallow water tank environment, for which a forward acoustic propagating model is not required. Last but not least, the generality of the proposed DNN approach from one-dimensional localization to progressively more complicated two-dimensional tasks is also considered.

1.
S. R.
Venkatesh
,
D. R.
Polak
, and
S.
Narayanan
, “
Beamforming algorithm for distributed source localization and its application to jet noise
,”
AIAA J.
41
(
7
),
1238
1246
(
2003
).
2.
A.
Mimani
,
C.
Doolan
, and
P.
Medwell
, “
Multiple line arrays for the characterization of aeroacoustic sources using a time-reversal method
,”
J. Acoust. Soc. Am.
134
(
4
),
EL327
EL333
(
2013
).
3.
T.
Kundu
, “
Acoustic source localization
,”
Ultrasonics
54
(
1
),
25
38
(
2014
).
4.
Y.
Huang
,
J.
Benesty
, and
G. W.
Elko
, “
Passive acoustic source localization for video camera steering
,” in
Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing
,
IEEE
(
2000
), Vol.
2
, pp.
II909
II912
.
5.
L.
Calmes
,
G.
Lakemeyer
, and
H.
Wagner
, “
Azimuthal sound localization using coincidence of timing across frequency on a robotic platform
,”
J. Acoust. Soc. Am.
121
(
4
),
2034
2048
(
2007
).
6.
L.
Zhang
,
J.
Huang
,
Q.
Zhang
, and
Y.
Hou
, “
Normal-mode based music for bearing estimation in shallow water
,” in
Proceedings of the 5th IEEE Sensor Array and Multichannel Signal Processing Workshop
,
IEEE
(
2008
), pp.
91
94
.
7.
H.
Schmidt
,
A.
Baggeroer
,
W.
Kuperman
, and
E.
Scheer
, “
Environmentally tolerant beamforming for high-resolution matched field processing: Deterministic mismatch
,”
J. Acoust. Soc. Am.
88
(
4
),
1851
1862
(
1990
).
8.
H. P.
Bucker
, “
Use of calculated sound fields and matched-field detection to locate sound sources in shallow water
,”
J. Acoust. Soc. Am.
59
(
2
),
368
373
(
1976
).
9.
A. B.
Baggeroer
,
W. A.
Kuperman
, and
P. N.
Mikhalevsky
, “
An overview of matched field methods in ocean acoustics
,”
IEEE J. Ocean. Eng.
18
(
4
),
401
424
(
1993
).
10.
P.
Hursky
,
W. S.
Hodgkiss
, and
W. A.
Kuperman
, “
Matched field processing with data-derived modes
,”
J. Acoust. Soc. Am.
109
(
4
),
1355
1366
(
2001
).
11.
G.
Hickman
and
J. L.
Krolik
, “
Matched-field depth estimation for active sonar
,”
J. Acoust. Soc. Am.
115
(
2
),
620
629
(
2004
).
12.
Y. Le
Gall
,
S. E.
Dosso
,
F.-X.
Socheleau
, and
J.
Bonnel
, “
Bayesian source localization with uncertain Green's function in an uncertain shallow water ocean
,”
J. Acoust. Soc. Am.
139
(
3
),
993
1004
(
2016
).
13.
Z.
Liu
,
C.
Sun
,
Y.
Yang
, and
J.
Du
, “
Robust source localization using predictable mode subspace in uncertain shallow ocean environment
,” in
Oceans
(
IEEE
,
San Diego, CA
,
2013
), pp.
1
5
.
14.
K.-C.
Lee
,
J.-S.
Ou
, and
M.-C.
Huang
, “
Underwater acoustic localization by principal components analyses based probabilistic approach
,”
Appl. Acoust.
70
(
9
),
1168
1174
(
2009
).
15.
R.
Lefort
,
G.
Real
, and
A.
Drémeau
, “
Direct regressions for underwater acoustic source localization in fluctuating oceans
,”
Appl. Acoust.
116
,
303
310
(
2017
).
16.
H.
Niu
,
E.
Reeves
, and
P.
Gerstoft
, “
Source localization in an ocean waveguide using supervised machine learning
,”
J. Acoust. Soc. Am.
142
(
3
),
1176
1188
(
2017
).
17.
H.
Niu
,
E.
Ozanich
, and
P.
Gerstoft
, “
Ship localization in Santa Barbara channel using machine learning classifiers
,”
J. Acoust. Soc. Am.
142
(
5
),
EL455
EL460
(
2017
).
18.
Z.
Huang
,
J.
Xu
,
Z.
Gong
,
H.
Wang
, and
Y.
Yan
, “
Source localization using deep neural networks in a shallow water environment
,”
J. Acoust. Soc. Am.
143
(
5
),
2922
2932
(
2018
).
19.
X.
Huang
,
L.
Bai
,
I.
Vinogradov
, and
E.
Peers
, “
Adaptive beamforming for array signal processing in aeroacoustic measurements
,”
J. Acoust. Soc. Am.
131
(
3
),
2152
2161
(
2012
).
20.
Q.
Wei
,
S.
Zhong
, and
X.
Huang
, “
Experimental evaluation of flow-induced noise in level flight of the pigeon (Columba livia)
,”
J. Acoust. Soc. Am.
134
(
1
),
EL57
EL63
(
2013
).
21.
K.
He
,
X.
Zhang
,
S.
Ren
, and
J.
Sun
, “
Deep residual learning for image recognition
,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(
2016
), pp.
770
778
.
22.
J.
Devlin
,
M.-W.
Chang
,
K.
Lee
, and
K.
Toutanova
, “
Bert: Pre-training of deep bidirectional transformers for language understanding
,” arXiv:1810.04805 (
2018
).
23.
Z.
Zhang
,
J.
Geiger
,
J.
Pohjalainen
,
A. E.-D.
Mousa
,
W.
Jin
, and
B.
Schuller
, “
Deep learning for environmentally robust speech recognition: An overview of recent developments
,”
ACM Trans. Intell. Syst. Technol.
9
(
5
),
49
(
2018
).
24.
M. B.
Porter
, “
The KRAKEN normal mode program
,”
Technical Report No. NRL/MR/5120-92-6920
,
Naval Research Laboratory
,
Washington, DC
(
1992
).
25.
Y.
Wang
and
H.
Peng
, “
Underwater acoustic source localization using generalized regression neural network
,”
J. Acoust. Soc. Am.
143
(
4
),
2321
2331
(
2018
).
26.
D. P.
Kingma
and
J.
Ba
, “
Adam: A method for stochastic optimization
,” arXiv:1412.6980 (
2014
).
27.
L.
Prechelt
, “
Early stopping-but when
?,” in
Neural Networks: Tricks of the Trade
(
Springer
,
Berlin
,
1998
), pp.
55
69
.
28.
A.
Paszke
,
S.
Gross
,
S.
Chintala
,
G.
Chanan
,
E.
Yang
,
Z.
DeVito
,
Z.
Lin
,
A.
Desmaison
,
L.
Antiga
, and
A.
Lerer
, “
Automatic differentiation in PyTorch
,” in
NIPS Autodiff Workshop
(
2017
).
29.
B.
Fenech
and
K.
Takeda
, “
Towards more accurate beamforming levels in closed-section wind tunnels via de-reverberation
,” in
Proceedings of the 13th AIAA/CEAS Aeroacoustics Conference
(
2007
), p.
3431
.
30.
A.
Cigada
,
F.
Ripamonti
, and
M.
Vanali
, “
The delay & sum algorithm applied to microphone array measurements: Numerical analysis and experimental validation
,”
Mech. Syst. Sign. Process.
21
(
6
),
2645
2664
(
2007
).
31.
C. S.
Allen
,
W. K.
Blake
,
R. P.
Dougherty
,
D.
Lynch
,
P. T.
Soderman
, and
J. R.
Underbrink
,
Aeroacoustic Measurements
(
Springer Science & Business Media
,
2002
), pp.
112
113
.
32.
E. L.
Ferguson
,
R.
Ramakrishnan
,
S. B.
Williams
, and
C. T.
Jin
, “
Convolutional neural networks for passive monitoring of a shallow water environment using a single sensor
,” in
Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing
,
IEEE
(
2017
), pp.
2657
2661
.
You do not currently have access to this content.