When configured as a wide aperture array, only three hydrophones are required to localize dolphin sonar transmissions with unprecedented precision, even when the underwater sound scene of their natural habitat is complicated by many of them emitting echolocation “click” signals at the same time. Given the sensor position coordinates and speed of sound travel, the passive ranging by the wavefront curvature algorithm estimates the source range and bearing, using range difference measurements between signals, arriving at two adjacent pairs of widely spaced sensors. If the sensor positions are not strictly collinear, then the source range estimates are biased. This problem is overcome by modifying the input parameters to the basic passive ranging algorithm. The experimental results for the estimated source positions are found to agree with the predicted localization performance for a wide aperture array passive ranging sonar. The precision of the source bearing estimates is 0.005°, which is independent of the source range. The precision of the source range estimates degrades a hundredfold (from 2.5 cm to 2.6 m) for a tenfold increase in source range (33–318 m). A lower bound for the peak-to-peak source levels of Indo-Pacific bottlenose dolphins (Tursiops aduncus) is 183 ± 2 dB re 1 μPa for regular click pulses.

1.
M. O.
Lammers
,
W. W. L.
Au
,
R.
Aubauer
, and
P. E.
Nachtigall
, “
A comparative analysis of the pulsed emissions of free-ranging Hawaiian spinner dolphins (Stenella longirostris)
,” in
Echolocation in Bats and Dolphins
(
University of Chicago Press
,
Chicago, IL
,
2004
), pp.
414
419
.
2.
R.
Aubauer
,
M. O.
Lammers
, and
W. W. L.
Au
, “
Acoustical localization of dolphins in shallow water
,”
J. Acoust. Soc. Am.
102
(
5
),
3213
(
1997
).
3.
W. A.
Watkins
and
W. E.
Schevill
, “
Sound source location by arrival-times on a non-rigid three-dimensional hydrophone array
,” in
Deep Sea Research and Oceanographic Abstracts
(
Elsevier
,
Amsterdam
,
1972
), Vol.
19
, pp.
691
706
.
4.
M.
Schotten
,
W. W. L.
Au
,
M. O.
Lammers
, and
R.
Aubauer
, “
Echolocation recordings and localization of wild spinner dolphins (Stenella longirostris) and pantropical spotted dolphins (S. attenuata) using a four-hydrophone array
,” in
Echolocation in Bats and Dolphins
(
University of Chicago Press
,
Chicago
,
2004
), pp.
393
400
.
5.
W. W. L.
Au
,
The Sonar of Dolphins
(
Springer
,
New York
,
1993
).
6.
G. C.
Carter
, “
Time delay estimation for passive sonar signal processing
,”
IEEE Trans. Acoust., Speech Signal Process.
29
(
3
),
463
470
(
1981
).
7.
B. G.
Ferguson
and
R. J.
Wyber
, “
Wavefront curvature passive ranging in a temporally varying sound propagation medium
,” in
OCEANS, 2001 MTS/IEEE Conference and Exhibition
(
2001
), Vol.
4
, pp.
2359
2365
.
8.
B. G.
Ferguson
and
R. J.
Wyber
, “
Generalized framework for real aperture, synthetic aperture, and tomographic sonar imaging
,”
IEEE J. Ocean. Eng.
34
(
3
),
225
238
(
2009
).
9.
M. D.
Dahl
, “
Synthetic aperture sonar
,” available at https://www.kongsberg.com/maritime/products/mapping-systems/mapping-systems/sonars/SAS (Last viewed August 21,
2019
).
10.
G. C.
Carter
, “
Passive ranging errors due to receiving hydrophone position uncertainty
,”
J. Acoust. Soc. Am.
65
(
2
),
528
530
(
1979
).
11.
J. O.
Smith
and
J. S.
Abel
, “
Closed-form least-squares source location estimation from range-difference measurements
,”
IEEE Trans. Acoust., Speech Signal Process.
35
(
12
),
1661
1669
(
1987
).
12.
P.
Heimdal
and
F.
Bryn
, “
Passive ranging techniques
,” in
Signal Processing
(
Academic
,
London
,
1973
), pp.
261
270
.
13.
B.
Friedlander
, “
A passive localization algorithm and its accuracy analysis
,”
IEEE J. Ocean. Eng.
12
(
1
),
234
245
(
1987
).
14.
H. C.
Schau
and
A. Z.
Robinson
, “
Passive source localization employing intersecting spherical surfaces from time-of-arrival differences
,”
IEEE Trans. Acoust., Speech Signal Process.
35
(
8
),
1223
1225
(
1987
).
15.
B. G.
Ferguson
,
K. W.
Lo
, and
A.
Ranjit
, “
Sensor position estimation and source ranging in a shallow water environment
,”
IEEE J. Ocean. Eng.
30
(
2
),
327
337
(
2005
).
16.
W. W. L.
Au
,
The Sonar of Dolphins
(
Springer
,
New York
,
1993
), Chap. 5, p.
116
.
17.
B. G.
Ferguson
and
K. W.
Lo
, “
Passive ranging errors due to multipath distortion of deterministic transient signals with application to the localization of small arms fire
,”
J. Acoust. Soc. Am.
111
(
1
),
117
128
(
2002
).
18.
D. M.
Meko
, “
Detrending
,” in
Applied Time Series Analysis Notes
(
University of Arizona
,
Tucson, AZ
,
2013
), Vol.
7
.
19.
G. C.
Carter
, “
Coherence and time delay estimation
,” in
Signal Processing
(
IEEE
,
New York
,
1993
), p.
19
.
20.
P. T.
Madsen
and
M.
Wahlberg
, “
Recording and quantification of ultrasonic echolocation clicks from free-ranging toothed whales
,”
Deep Sea Res., Part I
54
(
8
),
1421
1444
(
2007
).
21.
M.
Wahlberg
,
F. H.
Jensen
,
N. A.
Soto
,
K.
Beedholm
,
L.
Bejder
,
C.
Oliveira
,
M.
Rasmussen
,
M.
Simon
,
A.
Villadsgaard
, and
P. T.
Madsen
, “
Source parameters of echolocation clicks from wild bottlenose dolphins (Tursiops aduncus and Tursiops truncatus)
,”
J. Acoust. Soc. Am.
130
(
4
),
2263
2274
(
2011
).
22.
M.
de Freitas
,
F. H.
Jensen
,
J.
Tyne
,
L.
Bejder
, and
P. T.
Madsen
, “
Echolocation parameters of Australian humpback dolphins (Sousa sahulensis) and Indo-Pacific bottlenose dolphins (Tursiops aduncus) in the wild
,”
J. Acoust. Soc. Am.
137
(
6
),
3033
3041
(
2015
).
23.
Y.
Wang
, “
Frequencies of the ricker wavelet
,”
Geophysics
80
(
2
),
A31
A37
(
2015
).
24.
W. W. L.
Au
,
The Sonar of Dolphins
(
Springer
,
New York
,
1993
), Chap. 5, p.
121
.
25.
E. L.
Ferguson
,
S. B.
Williams
,
C. T.
Jin
, and
B. G.
Ferguson
, “
Echolocating dolphins as opportunistic signal sources for observing fine structure in the impulse responses of acoustic scatterers
,”
J. Acoust. Soc. Am.
142
(
4
),
2710
(
2017
).
You do not currently have access to this content.