This paper considers the problem of estimating the trajectory of an autonomous underwater vehicle (AUV) via a single passive receiver, without any anchor nodes or receiving arrays, and with the only help of a sequence of known acoustic signals emitted by the AUV. This scenario is of interest in case multilateration-based alternatives would require the deployment of many receivers and imply exceedingly high costs, e.g., for the coverage of wide areas. The proposed method exploits the knowledge of environmental parameters such as the sound speed profile, bathymetry and bottom sediments in order to estimate the location of the AUV, taking advantage of the spatial dependency of channel impulse responses that arises from the diverse bathymetry around the receiver. This dependency is captured by comparing channel estimates against a database of channel responses, pre-computed through an acoustic propagation model. This yields multiple likely AUV locations, which are filtered via a path tracking method similar to the Viterbi algorithm, in order to estimate the trajectory of the AUV. Results obtained both from simulations and from a sea experiment show that the proposed method can estimate node locations and paths with a small error, especially considering the use of a single receiver.

1.
E.
Dubrovinskaya
,
R.
Diamant
, and
P.
Casari
, “
Anchorless underwater acoustic localization
,” in
Proceedings of the IEEE, 14th Workshop on Positioning, Navigation and Communications
(
2017
).
2.
J. J.
Leonard
and
A.
Bahr
, “
Autonomous underwater vehicle navigation
,” in
Handbook of Ocean Engineering
(
Springer
,
New York
,
2016
), pp.
341
358
.
3.
Z.
Zhou
,
Z.
Peng
,
J.-H.
Cui
,
Z.
Shi
, and
A.
Bagtzoglou
, “
Scalable localization with mobility prediction for underwater sensor networks
,”
IEEE Trans. Mobile Comput.
10
(
3
),
335
348
(
2011
).
4.
R.
Diamant
and
L.
Lampe
, “
Underwater localization with time-synchronization and propagation speed uncertainties
,”
IEEE Trans. Mobile Comput.
12
(
7
),
1257
1269
(
2013
).
5.
K.-C.
Lee
,
J.-S.
Ou
,
M.-C.
Huang
, and
M.-C.
Fang
, “
A novel location estimation based on pattern matching algorithm in underwater environments
,”
Applied Acoust.
70
(
3
),
479
483
(
2009
).
6.
H.-P.
Tan
,
R.
Diamant
,
W. K.
Seah
, and
M.
Waldmeyer
, “
A survey of techniques and challenges in underwater localization
,”
Ocean Eng.
38
(
14
),
1663
1676
(
2011
).
7.
L.
Paull
,
S.
Saeedi
,
M.
Seto
, and
H.
Li
, “
AUV navigation and localization: A review
,”
IEEE J. Ocean. Eng.
39
(
1
),
131
149
(
2014
).
8.
J.
Reis
,
M.
Morgado
,
P.
Batista
,
P.
Oliveira
, and
C.
Silvestre
, “
Design and experimental validation of a USBL underwater acoustic positioning system
,”
Sensors
16
(
9
),
1
23
(
2016
).
9.
M.
Erol-Kantarci
,
H.
Mouftah
, and
S.
Oktug
, “
Localization techniques for underwater acoustic sensor networks
,”
IEEE Commun. Mag.
48
(
12
),
152
158
(
2010
).
10.
S.
Gezici
, “
A survey on wireless position estimation
,”
Wireless Pers. Commun.
44
(
3
),
263
282
(
2008
).
11.
Z.
Zhang
,
C. L.
Law
, and
Y. L.
Guan
, “
Modified phase-only correlator with kurtosis-based amplified-noise suppression
,”
IEEE Trans. Wireless Commun.
9
(
11
),
3341
3345
(
2010
).
12.
L.
Mu
,
G.
Kuo
, and
N.
Tao
, “
A novel ToA location algorithm using LOS range estimation for NLOS environments
,” in
Proceedings of the IEEE Transactions on Vehicular Technology
, Melbourne, Australia (
2006
).
13.
J.
Ash
and
R.
Moses
, “
Acoustic time delay estimation and sensor network self-localization: Experimental results
,”
J. Acoust. Soc. Am.
118
(
2
),
841
850
(
2005
).
14.
D.
McCrady
,
L.
Doyle
,
H.
Forstrom
,
T.
Dempsey
, and
M.
Martorana
, “
Mobile ranging using low-accuracy clocks
,”
IEEE Trans. Microwave Theory Tech.
48
(
6
),
951
957
(
2000
).
15.
S.
Fischer
,
H.
Grubeck
,
A.
Kangas
,
H.
Koorapaty
,
E.
Larsson
, and
P.
Lundqvist
, “
Time of arrival estimation of narrowband TDMA signals for mobile positioning
,” in
IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC)
(
1998
), pp.
451
455
.
16.
E.
Dubrovinskaya
,
I.
Nissen
, and
P.
Casari
, “
On the accuracy of passive multipath-aided underwater range estimation
,” in
IEEE Third Underwater Communications and Networking Conference (UComms)
, Lerici, Italy (
2016
).
17.
C. O.
Tiemann
,
M. B.
Porter
, and
L. N.
Frazer
, “
Localization of marine mammals near Hawaii using an acoustic propagation model
,”
J. Acoust. Soc. Am.
115
(
6
),
2834
2843
(
2004
).
18.
J.
Gebbie
,
M.
Siderius
, and
J. S.
Allen
 III
, “
A two-hydrophone range and bearing localization algorithm with performance analysis
,”
J. Acoust. Soc. Am.
137
(
3
),
1586
1597
(
2015
).
19.
A. B.
Baggeroer
,
W. A.
Kuperman
, and
P. N.
Mikhalevsky
, “
An overview of matched field methods in ocean acoustics
,”
IEEE J. Ocean. Eng.
18
(
4
),
401
424
(
1993
).
20.
J. S.
Perkins
and
W.
Kuperman
, “
Environmental signal processing: Three-dimensional matched-field processing with a vertical array
,”
J. Acoust. Soc. Am.
87
(
4
),
1553
1556
(
1990
).
21.
K. L.
Gemba
,
W. S.
Hodgkiss
, and
P.
Gerstoft
, “
Adaptive and compressive matched field processing
,”
J. Acoust. Soc. Am.
141
(
1
),
92
103
(
2017
).
22.
S.
Shakeri
and
G.
Leus
, “
Underwater ultra-wideband fingerprinting-based sparse localization
,” in
IEEE Workshop on Signal Processing Advances in Wireless Communications (SPAWC)
,
Toronto, Canada
(
2014
).
23.
S.
Rakotonarivo
and
W.
Kuperman
, “
Model-independent range localization of a moving source in shallow water
,”
J. Acoust. Soc. Am.
132
(
4
),
2218
2223
(
2012
).
24.
C. M.
Verlinden
,
J.
Sarkar
,
B. D.
Cornuelle
, and
W. A.
Kuperman
, “
Determination of acoustic waveguide invariant using ships as sources of opportunity in a shallow water marine environment
,”
J. Acoust. Soc. Am.
141
(
2
),
EL102
EL107
(
2017
).
25.
L.
Liao
,
Y. V.
Zakharov
, and
P. D.
Mitchell
, “
Underwater localization based on grid computation and its application to transmit beamforming in multiuser UWA communications
,”
IEEE Access
6
,
4297
4307
(
2018
).
26.
M. S. I.
Seddik
,
L.
Jaulin
, and
J.
Grimsdale
, “
Phase based localization for underwater vehicles using interval analysis
,”
Math. Comp. Sci.
8
(
3
),
495
502
(
2014
).
27.
H.
Liu
,
H.
Darabi
,
P.
Banerjee
, and
J.
Liu
, “
Survey of wireless indoor positioning techniques and systems
,”
IEEE Trans. Syst., Man, Cybern. C
37
(
6
),
1067
1080
(
2007
).
28.
K.
Kaemarungsi
and
P.
Krishnamurthy
, “
Modeling of indoor positioning systems based on location fingerprinting
,” in
IEEE Annual Joint Conference INFOCOM, Computer and Communications Societies
,
Hong Kong, China
(
2004
), Vol.
2
, pp.
1012
1022
.
29.
Y.
Jin
,
W.
Soh
, and
W.
Wong
, “
Indoor localization with channel impulse response based fingerprint and nonparametric regression
,”
IEEE Trans. Wireless Commun.
9
(
3
),
1120
1127
(
2010
).
30.
X.
Guo
and
N.
Ansari
, “
Localization by fusing a group of fingerprints via multiple antennas in indoor environment
,”
IEEE Trans. Veh. Technol.
66
(
11
),
9904
9915
(
2017
).
31.
P.
Tseng
,
Y.
Chan
,
Y.
Lin
,
D.
Lin
,
N.
Wu
, and
T.
Wang
, “
Ray-tracing-assisted fingerprinting based on channel impulse response measurement for indoor positioning
,”
IEEE Trans. Instrum. Meas.
66
(
5
),
1032
1045
(
2017
).
32.
N.
Etemadyrad
, “A sequential detection approach to indoor positioning using RSS-based fingerprinting
,” Master's thesis,
George Mason University
(
2017
).
33.
P. K.
Yadav
and
W.
Meng
, “
Mobile targets localization in a field area using moving Gaussian peaks and probability map
,” in
Proceedings of the 11th IEEE International Conference on Control & Automation (ICCA)
,
Taichung, Taiwan
(
2014
).
34.
Z.
Xiao
,
H.
Wen
,
A.
Markham
, and
N.
Trigoni
, “
Lightweight map matching for indoor localisation using conditional random fields
,” in
Proceedings of the 13th International Symposium on Information Processing in Sensor Networks
, Berlin, Germany (
2014
).
35.
Z.
Wei
,
Y.
Zhao
,
X.
Liu
, and
Z.
Feng
, “
DoA-LF: A location fingerprint positioning algorithm with millimeter-wave
,”
IEEE Access
5
,
22678
22688
(
2017
).
36.
J.
Palacios
,
G.
Bielsa
,
P.
Casari
, and
J.
Widmer
, “
Single- and multiple-access point indoor localization for millimeter-wave networks
,”
IEEE Trans. Wireless Commun.
18
(
3
),
1927
1942
(
2019
).
37.
F.
Jensen
,
W.
Kuperman
,
M.
Porter
, and
H.
Schmidt
,
Computational Ocean Acoustics
, 2nd ed. (
Springer-Verlag
,
New York
,
1984
).
38.
HLS
Research
, “
Bellhop code
,” http://oalib.hlsresearch.com/Rays/index.html (Last viewed May 2018).
39.
P.
Qarabaqi
and
M.
Stojanovic
, “
Statistical characterization and computationally efficient modeling of a class of underwater acoustic communication channels
,”
IEEE J. Ocean. Eng.
38
(
4
),
701
717
(
2013
).
40.
L. M.
Wolff
,
E.
Szczepanski
, and
S.
Badri-Hoeher
, “
Acoustic underwater channel and network simulator
,” in
Proceedings of IEEE OCEANS
,
Yeosu, Korea
(
2012
), pp.
1
6
.
41.
Note that this information is part of Bellhop's standard output data, and that we do not need to track any propagation history analysis for any of the components of the measured CIR.
42.
R.
Diamant
, “
Closed form analysis of the normalized matched filter with a test case for detection of underwater acoustic signals
,”
IEEE Access
4
,
8225
8235
(
2016
).
43.
R.
Diamant
,
H.-P.
Tan
, and
L.
Lampe
, “
LOS and NLOS classification for underwater acoustic localization
,”
IEEE Trans. Mobile Comput.
13
(
2
),
311
323
(
2014
).
44.
Q.
Wang
,
L.
Wei
, and
R.
Kennedy
, “
Iterative Viterbi decoding, trellis shaping, and multilevel structure for high-rate parity-concatenated TCM
,”
IEEE Trans. Commun.
50
(
1
),
48
55
(
2002
).
45.
L.
Marchetti
and
R.
Reggiannini
, “
An efficient receiver structure for sweep-spread-carrier underwater acoustic links
,”
IEEE J. Ocean. Eng.
41
(
2
),
440
449
(
2016
).
46.
C.
Boya
,
M.
Ruiz-Llata
,
J.
Posada
,
A.
Garcia-Souto
, and
A.
José
, “
Identification of multiple partial discharge sources using acoustic emission technique and blind source separation
,”
IEEE Trans. Dielectr. Electr. Insul.
22
(
3
),
1663
1673
(
2015
).
47.
S.
Byun
,
S.
Kim
,
C.
Park
,
K.
Kim
, and
C.
Lee
, “
Cyclostationary analysis of underwater noise for vehicle propeller monitoring
,” in
Proceedings of the MTS/IEEE OCEANS
,
Monterey, CA
(
2016
).
48.
D.
Divins
and
D.
Metzger
, “
US coastal relief model
,” (
2016
), http://www.ngdc.noaa.gov/mgg/coastal/coastal.html (Last viewed November 30, 2019).
49.
R.
Diamant
,
A.
Knap
,
S.
Dahan
,
I.
Mardix
,
J.
Walpert
, and
S.
DiMarco
, “
THEMO: The Texas A&M—University of Haifa—Eastern Mediterranean Observatory
,” in
Proceedings of MTS/IEEE OCEANS
, Kobe, Japan (
2018
).
50.
T.
Alexandri
and
R.
Diamant
, “
A reverse bearings only target motion analysis for autonomous underwater vehicle navigation
,”
IEEE Trans. Mobile Comput.
18
(
3
),
494
506
(
2019
).
51.
Information on low-frequency pingers available at http://www.jwfishers.com/products/pingers-low.html (Last viewed November 30,
2019
).
You do not currently have access to this content.