This study identifies general characteristics of methods to estimate the absolute range between an acoustic transmitter and a receiver in the deep ocean. The data are from three days of the PhilSea10 experiment with a single fixed transmitter depth (∼998 m) and 150 receiver depths (∼210–5388 m) of known location, and a great-circle transmitter-receiver distance of ∼510 km. The proposed ranging methods compare observed acoustic records with synthetic records computed through the HYCOM (hybrid coordinate ocean model) model. More than 8900 transmissions over 3 days characterize the statistical variation of range errors. Reliable ranging methods de-emphasize the parts of the data records least likely to be reproduced by the synthetics, which include arrival amplitudes, the later parts of the acoustic records composed of nearly horizontally launched rays (i.e., the finale), and waves that sample a narrow span of ocean depths. The ranging methods proposed normalize amplitudes, measure travel times, or reject parts of the waveforms beyond a critical time. All deliver reliable range estimates based on the time and path-averaged HYCOM model, although the final method performs best. The principles behind these methods are transportable and expected to provide reliable range estimates in different deep water settings.

1.
Andrew
,
R. K.
,
Ganse
,
A.
,
White
,
A. W.
,
Mercer
,
J. A.
,
Dzieciuch
,
M. A.
,
Worcester
,
P. F.
, and
Colosi
,
J. A.
(
2016
). “
Low-frequency pulse propagation over 510 km in the Philippine Sea: A comparison of observed and theoretical pulse spreading
,”
J. Acoust. Soc. Am.
140
(
1
),
216
228
.
2.
Andrew
,
R. K.
,
Mercer
,
J. A.
,
Bell
,
B. M.
,
Ganse
,
A. A.
,
Buck
,
L.
,
Wen
,
T.
, and
McGinnis
,
T. M.
(
2010
). “
PhilS ea10 APL-UW cruise report: 5–29 May 2010
,” Technical Report APL-UW TR 1001 (
Applied Physics Laboratory, University of Washington
,
Seattle, WA
).
3.
Chandrasekhar
,
V.
,
Seah
,
W. K.
,
Choo
,
Y. S.
, and
Ee
,
H. V.
(
2006
). “
Localization in underwater sensor networks: Survey and challenges
,” in
Proceedings of the 1st ACM international Workshop on Underwater Networks
, pp.
33
40
.
4.
Chapman
,
C.
(
1973
). “
The Earth flattening transformation in body wave theory
,”
Geophys. J. Int.
35
,
55
70
.
5.
Chassignet
,
E. P.
,
Hurlburt
,
H. E.
,
Smedstad
,
O. M.
,
Halliwell
,
G. R.
,
Hogan
,
P. J.
,
Wallcraft
,
A. J.
,
Baraille
,
R.
, and
Bleck
,
R.
(
2007
). “
The HYCOM (hybrid coordinate ocean model) data assimilative system
,”
J. Mar. Syst.
65
(
1
),
60
83
.
6.
Colosi
,
J. A.
, and
Morozov
,
A. K.
(
2009
). “
Statistics of normal mode amplitudes in an ocean with random sound-speed perturbations: Cross-mode coherence and mean intensity
,”
J. Acoust. Soc. Am.
126
(
3
),
1026
1035
.
7.
Colosi
,
J. A.
,
Scheer
,
E. K.
,
Flatté
,
S. M.
,
Cornuelle
,
B. D.
,
Dzieciuch
,
M. A.
,
Munk
,
W. H.
,
Worcester
,
P. F.
,
Howe
,
B. M.
,
Mercer
,
J. A.
,
Spindel
,
R. C.
, and
Baggeroer
,
A. B.
(
1999
). “
Comparisons of measured and predicted acoustic fluctuations for a 3250-km propagation experiment in the eastern North Pacific Ocean
,”
J. Acoust. Soc. Am.
105
(
6
),
3202
3218
.
8.
Dosso
,
S. E.
(
2003
). “
Environmental uncertainty in ocean acoustic source localization
,”
Inverse Probl.
19
(
2
),
419
431
.
9.
Duda
,
T.
,
Morozov
,
A. K.
,
Howe
,
B. M.
,
Brown
,
M. G.
,
Speer
,
K.
,
Lazarevich
,
P.
,
Worcester
,
P. F.
, and
Cornuelle
,
B. D.
(
2006
). “
Evaluation of a long-range acoustic navigation/thermometry system
,” in
IEEE Oceans Conference
, 18–21 September 2006, Boston, MA.
10.
Dushaw
,
B. D.
,
Dzieciuch
,
M. A.
, and
Worcester
,
P. F.
(
2009
). “
On the time-mean state of ocean models and the properties of long-range acoustics
,”
J. Acoust. Soc. Am.
125
(
4
),
2492
.
11.
Dushaw
,
B. D.
,
Howe
,
B. M.
,
Cornuelle
,
B. D.
,
Worcester
,
P. F.
, and
Luther
,
D. S.
(
1995
). “
Barotropic and baroclinic tides in the central north pacific ocean determined from long-range reciprocal acoustic transmissions
,”
J. Phys. Oceanogr.
25
(
4
),
631
647
.
12.
Dushaw
,
B. D.
, and
Worcester
,
P. F.
(
1998
). “
Resonant diurnal internal tides in the North Atlantic
,”
Geophys. Res. Lett.
25
(
12
),
2189
2192
, .
13.
Dushaw
,
B. D.
,
Worcester
,
P. F.
, and
Dzieciuch
,
M. A.
(
2011
). “
On the predictability of mode-1 internal tides
,”
Deep Sea Res., Part I
58
(
6
),
677
698
.
14.
Dzieciuch
,
M. A.
(
2014
). “
Signal processing and tracking of arrivals in ocean acoustic tomography
,”
J. Acoust. Soc. Am.
136
(
5
),
2512
2522
.
15.
Flatté
,
S. M.
, and
Vera
,
M. D.
(
2003
). “
Comparison between ocean-acoustic fluctuations in parabolic-equation simulations and estimates from integral approximations
,”
J. Acoust. Soc. Am.
114
(
2
),
697
706
.
16.
Freeman
,
S. E.
,
Buckingham
,
M. J.
,
Freeman
,
L. A.
,
Lammers
,
M. O.
, and
D'Spain
,
G. L.
(
2015
). “
Cross-correlation, triangulation, and curved-wavefront focusing of coral reef sound using a bi-linear hydrophone array
,”
J. Acoust. Soc. Am.
137
(
1
),
30
41
.
17.
Howe
,
B. M.
,
Worcester
,
P. F.
, and
Spindel
,
R. C.
(
1987
). “
Ocean acoustic tomography: Mesoscale velocity
,”
J. Geophys. Res.
92
(
C4
),
3785
3805
, .
18.
Jensen
,
F. B.
,
Kuperman
,
W. A.
,
Porter
,
M. B.
, and
Schmidt
,
H.
(
2011
).
Computational Ocean Acoustics
(
Springer Science and Business Media
,
New York
), Chap. 5, pp.
337
455
.
19.
Karney
,
C.
(
2013
). “
Algorithms for geodesics
,”
J. Geod.
87
,
43
55
.
20.
Kim
,
J.
,
Park
,
Y.
,
Lee
,
S.
, and
Lee
,
Y. K.
(
2014
). “
Underwater glider navigation error compensation using sea current data
,”
IFAC Proc.
47
(
3
),
9661
9666
.
21.
Leonard
,
J. J.
, and
Bahr
,
A.
(
2016
). “
Autonomous underwater vehicle navigation
,” in
Springer Handbook of Ocean Engineering
, edited by
M. R.
Dhanak
and
N. I.
Xiros
(
Springer
,
Cham
), pp.
341
358
.
22.
McDougall
,
T. J.
, and
Barker
,
P. M.
(
2011
). “
Getting started with TEOS-10 and the Gibbs Seawater (GSW) Oceanographic Toolbox
,” http://www.teos-10.org/pubs/gsw/v3_04/pdf/Getting_Started.pdf (Last viewed November 27, 2019).
23.
Mikhalevsky
,
P. N.
,
Sagen
,
H.
,
Worcester
,
P. F.
,
Baggeroer
,
A. B.
,
Orcutt
,
J.
,
Moore
,
S. E.
,
Lee
,
C. M.
,
Vigness-Raposa
,
K. J.
,
Freitag
,
L.
,
Arrott
,
M.
,
Atakan
,
K.
,
Beszczynska-Möller
,
A.
,
Duda
,
T. F.
,
Dushaw
,
B. D.
,
Gascard
,
J. C.
,
Gavrilov
,
A. N.
,
Keers
,
H.
,
Morozov
,
A. K.
,
Munk
,
W. H.
,
Rixen
,
M.
,
Sandven
,
S.
,
Skarsoulis
,
E.
,
Stafford
,
K. M.
,
Vernon
,
F.
, and
Yuen
,
M. Y.
(
2015
). “
Multipurpose acoustic networks in the integrated Arctic Ocean observing system
,”
Arctic
68
, Suppl. 1,
11
27
.
24.
Munk
,
W.
,
Worcester
,
P.
, and
Wunsch
,
C.
(
2009
).
Ocean Acoustic Tomography
(
Cambridge University Press
,
Cambridge, UK
), Chap. 5, pp.
173
221
.
25.
Richardson
,
A.
, and
Nolte
,
L.
(
1991
). “
A posteriori probability source localization in an uncertain sound speed, deep ocean environment
,”
J. Acoust. Soc. Am.
89
(
5
),
2280
2284
.
26.
Saeed
,
N.
,
Celik
,
A.
,
Al-Naffouri
,
T. Y.
, and
Alouini
,
M.-S.
(
2019
). “
Underwater optical wireless communications, networking, and localization: A survey
,”
Ad Hoc Networks
94
,
101935
.
27.
Schmidt
,
H.
, and
Kuperman
,
W.
(
1995
). “
Spectral representations of rough interface reverberation in stratified ocean waveguides
,”
J. Acoust. Soc. Am.
97
(
4
),
2199
2209
.
28.
Skarsoulis
,
E.
, and
Piperakis
,
G.
(
2009
). “
Use of acoustic navigation signals for simultaneous localization and sound-speed estimation
,”
J. Acoust. Soc. Am.
125
(
3
),
1384
1393
.
29.
Smith
,
R. N.
,
Pereira
,
A.
,
Chao
,
Y.
,
Li
,
P. P.
,
Caron
,
D. A.
,
Jones
,
B. H.
, and
Sukhatme
,
G. S.
(
2010
). “
Autonomous underwater vehicle trajectory design coupled with predictive ocean models: A case study
,” in
2010 IEEE International Conference on Robotics and Automation
, pp.
4770
4777
.
30.
Tan
,
H.-P.
,
Diamant
,
R.
,
Seah
,
W. K.
, and
Waldmeyer
,
M.
(
2011
). “
A survey of techniques and challenges in underwater localization
,”
Ocean Eng.
38
(
14-15
),
1663
1676
.
31.
Tolstoy
,
A.
(
1993
).
Matched Field Processing for Underwater Acoustics
(
World Scientific Publishing
,
Singapore
), Chap. 4, pp.
91
180
.
32.
Van Uffelen
,
L. J.
,
Howe
,
B. M.
,
Nosal
,
E.-M.
,
Carter
,
G. S.
, and
Worcester
,
P. F.
(
2016
). “
Localization and subsurface position error estimation of gliders using broadband acoustic signals at long range
,”
IEEE J. Ocean. Eng.
41
(
3
),
501
508
.
33.
Van Uffelen
,
L. J.
,
Nosal
,
E.-M.
,
Howe
,
B. M.
,
Carter
,
G. S.
,
Worcester
,
P. F.
,
Dzieciuch
,
M. A.
,
Heaney
,
K. D.
,
Campbell
,
R. L.
, and
Cross
,
P. S.
(
2013
). “
Estimating uncertainty in subsurface glider position using transmissions from fixed acoustic tomography sources
,”
J. Acoust. Soc. Am.
134
(
4
),
3260
3271
.
34.
Worcester
,
P.
,
Spindel
,
R.
, and
Howe
,
B.
(
1985
). “
Reciprocal acoustic transmissions: Instrumentation for mesoscale monitoring of ocean currents
,”
IEEE J. Ocean. Eng.
10
,
123
137
.
35.
Worcester
,
P. F.
,
Cornuelle
,
B. D.
,
Dzieciuch
,
M. A.
,
Munk
,
W. H.
,
Howe
,
B. M.
,
Mercer
,
J. A.
,
Spindel
,
R. C.
,
Colosi
,
J. A.
,
Metzger
,
K.
,
Birdsall
,
T. G.
, and
Baggeroer
,
A. B.
(
1999
). “
A test of basin-scale acoustic thermometry using a large-aperture vertical array at 3250-km range in the eastern North Pacific Ocean
,”
J. Acoust. Soc. Am.
105
(
6
),
3185
3201
.
36.
Worcester
,
P. F.
,
Cornuelle
,
B. D.
,
Hildebrand
,
J. A.
,
Hodgkiss
,
W. S.
, Jr.
,
Duda
,
T. F.
,
Boyd
,
J.
,
Howe
,
B. M.
,
Mercer
,
J. A.
, and
Spindel
,
R. C.
(
1994
). “
A comparison of measured and predicted broadband acoustic arrival patterns in travel time-depth coordinates at 1000-km range
,”
J. Acoust. Soc. Am.
134
(
95
),
3118
3128
.
37.
Worcester
,
P. F.
,
Dzieciuch
,
M. A.
,
Mercer
,
J. A.
,
Andrew
,
R. K.
,
Dushaw
,
B. D.
,
Baggeroer
,
A. B.
,
Heaney
,
K. D.
,
D'Spain
,
G. L.
,
Colosi
,
J. A.
,
Stephen
,
R. A.
,
Kemp
,
J. N.
,
Howe
,
B. M.
,
Uffelen
,
L. J. V.
, and
Wage
,
K. E.
(
2013
). “
The North Pacific Acoustic Laboratory deep-water acoustic propagation experiments in the Philippine Sea
,”
J. Acoust. Soc. Am.
134
(
4
),
3359
3375
.
38.
Zhebel
,
O.
, and
Eisner
,
L.
(
2015
). “
Simultaneous microseismic event localization and source mechanism determination inversion of location and mechanism
,”
Geophysics
80
(
1
),
KS1
KS9
.
You do not currently have access to this content.