As they are generally small and only hear low frequencies, lizards have few cues for localizing sound. However, their ears show extreme directionality (up to 30 dB direction-dependent difference in eardrum vibrations) created by strong acoustical coupling of the eardrums, with almost perfect internal transmission from the contralateral ear over a broad frequency range. The activity of auditory nerve fibers reflects the eardrum directionality, so all auditory neurons are directional by default. This suggests that the ensuing neural processing of sound direction is simple in lizards. Even the simplest configuration of electrical analog models—two tympanic impedances connected via a central capacitor—produces directional patterns that are qualitatively similar to the experimental data on lizard ears. Several models, both analytical and (very recently) finite-element models, have been published. Robotic implementations using simplified models of the ear and of binaural comparison show that robust phonotaxic behavior can be generated with little additional processing and be performed by simple (and thus small and cheap) units. The authors review lizard directional processing and attempts at modeling and robotics with a twofold aim: to clarify the authors' understanding of central processing of sound localization in lizards, and to lead to technological developments of bioinspired robotics.

1.
Autrum
,
H.-J.
(
1940
). “
Über Lautäußerungen und Schallwahrnehmung bei Arthropoden, I. I. Das Richtungshören von Locusta und Versuch einer Hörtheorie für Tympanalorgane vom Locustidentyp” (“About vocalizations and hearing of Arthropods II: Directional hearing of Locusta and an attempt at a theory of hearing for tympanal organs of the locust type”)
,
Z. Vergl. Physiol.
28
,
326
352
.
2.
Braitenberg
,
V.
(
1984
).
Vehicles
(
MIT
,
Cambridge, MA
).
3.
Carr
,
C. E.
(
1992
). “
Evolution of the central auditory system in reptiles and birds
,” in
The Evolutionary Biology of Hearing
, edited by
D. B.
Webster
,
A. N.
Popper
, and
R. R.
Fay
(
Springer
,
New York
), pp.
511
543
.
4.
Carr
,
C. E.
,
Christensen-Dalsgaard
,
J.
, and
Bierman
,
H.
(
2016
). “
Coupled ears in lizards and crocodilians
,”
Biolog. Cybernet.
110
,
291
302
.
5.
Christensen-Dalsgaard
,
J.
(
2011
). “
Vertebrate pressure-gradient receivers
,”
Hear. Res.
273
(
1-2
),
37
45
.
6.
Christensen-Dalsgaard
,
J.
, and
Carr
,
C. E.
(
2008
). “
Evolution of a sensory novelty: Tympanic ears and the associated neural processing
,”
Brain Res. Bull.
75
(
2-4
),
365
370
.
7.
Christensen-Dalsgaard
,
J.
, and
Carr
,
C. E.
(
2018
). “
Processing of directional information in the gecko auditory nerve
,”
Acta Acust. Acust.
104
(
5
),
848
851
.
8.
Christensen-Dalsgaard
,
J.
, and
Manley
,
G. A.
(
2005
). “
Directionality of the lizard ear
,”
J. Exp. Biol.
208
,
1209
1217
.
9.
Christensen-Dalsgaard
,
J.
, and
Manley
,
G. A.
(
2008
). “
Acoustical coupling of lizard eardrums
,”
J. Assoc. Res. Otolaryngol.
9
,
407
416
.
10.
Christensen-Dalsgaard
,
J.
,
Tang
,
Y.
, and
Carr
,
C. E.
(
2011
). “
Binaural processing by the gecko auditory periphery
,”
J. Neurophysiol.
105
,
1992
2004
.
11.
Fletcher
,
N. H.
(
1992
).
Acoustic Systems in Biology
(
Oxford University
,
New York
).
12.
Heffner
,
R. S.
, and
Heffner
,
H. E.
(
1992
). “
Evolution of sound localization in mammals
,” in
The Evolutionary Biology of Hearing
, edited by
D. B.
Webster
,
A. N.
Popper
, and
R. R.
Fay
(
Springer
,
New York
), pp.
691
715
.
13.
Köppl
,
C.
(
2009
). “
Evolution of sound localisation in land vertebrates
,”
Curr. Biol.
19
(
15
),
R635
R639
.
14.
Livens
,
P.
,
Muyshondt
,
P. G. G.
, and
Dirckx
,
J. J. J.
(
2019
). “
Sound localization in the lizard using internally coupled ears: A finite-element approach
,”
Hear. Res.
378
,
23
32
.
15.
Manley
,
G. A.
(
1972
). “
Frequency response of the middle ear of geckos
,”
J. Comp. Physiol.
81
,
251
258
.
16.
Manley
,
G. A.
(
1981
). “
A review of the auditory physiology of the reptiles
,”
Prog. Sens. Physiol.
2
,
49
134
.
17.
Manley
,
G. A.
(
1990
).
Peripheral Hearing Mechanisms in Reptiles and Birds
(
Springer
,
New York
).
18.
Manley
,
G. A.
(
2010
). “
An evolutionary perspective on middle ears
,”
Hear. Res.
263
,
3
8
.
19.
Michelsen
A.
(
1992
). “
Hearing and sound communication in small animals: Evolutionary adaptations to the laws of physics
,” in
The Evolutionary Biology of Hearing
, edited by
D. M.
Webster
,
R. R.
Fay
, and
A. N.
Popper
(
Springer
,
New York
), pp.
61
78
.
20.
Miller
,
M. R.
Quantitative studies of auditory hair cells and nerves in lizards
,”
J. Comp. Neurol.
232
,
1
24
(
1985
).
21.
Robert
,
D.
(
2005
). “
Directional hearing in insects
,” in
Sound Source Localization
, edited by
A. N.
Popper
and
R. R.
Fay
(
Springer
,
New York
), pp.
6
35
.
22.
Sakaluk
,
S. K.
, and
Bellwood
,
J. J.
(
1984
). “
Gecko phonotaxis to cricket calling song: A case of satellite predation
,”
Anim. Behav.
32
,
659
662
.
23.
Shaikh
,
D.
,
Hallam
,
J.
, and
Christensen-Dalsgaard
,
J.
(
2016
). “
From ‘ear’ to there: A review of biorobotic models of auditory processing in lizards
,”
Biol. Cybernet.
110
,
303
317
.
24.
Shaikh
,
D.
,
Hallam
,
J.
,
Christensen-Dalsgaard
,
J.
, and
Zhang
,
L.
(
2009
). “
A Braitenberg lizard: Continuous phonotaxis with a lizard ear model
,”
Lect. Notes Comput. Sci.
5602
,
439
448
.
25.
Shaikh
,
D.
, and
Manoonpong
,
P.
(
2017
). “
An adaptive neural mechanism for acoustic motion perception with varying sparsity
,”
Front. Neurorobot.
11
,
11
.
26.
Szpir
,
M. R.
,
Sento
,
S.
, and
Ryugo
,
D. K.
(
1990
). “
Central projections of cochlear nerve-fibers in the alligator lizard
,”
J. Comp. Neurol.
295
(
4
),
530
547
.
27.
Tang
,
Y.
,
Christensen-Dalsgaard
,
J.
, and
Carr
,
C. E.
(
2012
). “
Organization of the auditory brainstem in a lizard, Gekko gecko. I. Auditory nerve, cochlear nuclei, and superior olivary nuclei
,”
J. Comp. Neurol.
520
(
8
),
1784
1799
.
28.
van Hemmen
,
J. L.
,
Christensen-Dalsgaard
,
J.
,
Carr
,
C. E.
, and
Narins
,
P. M.
Animals and ICE: Meaning, origin, and diversity
,”
Biological Cybernetics
110
(
4
),
237
246
(
2016
).
29.
Vedurmudi
,
A. P.
,
Goulet
,
J.
,
Christensen-Dalsgaard
,
J.
,
Young
,
B. A.
,
Williams
,
R.
, and
van Hemmen
,
J. L.
(
2016
). “
How internally coupled ears generate temporal and amplitude cues for sound localization
,”
Phys. Rev. Lett.
116
,
028101
.
30.
Vossen
,
C.
,
Christensen-Dalsgaard
,
J.
, and
van Hemmen
,
J. Leo
(
2010
). “
Analytical model of internally coupled ears
,”
J. Acoust. Soc. Am.
128
(
2
),
909
918
.
31.
Werner
,
Y. L.
, and
Igic
,
P. G.
(
2002
). “
The middle ear of gekkonoid lizards: Interspecific variation of structure in relation to body size and to auditory sensitivity
,”
Hear. Res.
167
(
1-2
),
33
45
.
32.
Werner
,
Y. L.
,
Montgomery
,
L. G.
,
Safford
,
S. D.
,
Igic
,
P. G.
, and
Saunders
,
J. C.
(
1998
). “
How body size affects middle-ear structure and function and auditory sensitivity in gekkonoid lizards
,”
J. Exp. Biol.
201
(
4
),
487
502
.
33.
Wever
,
E. G.
(
1978
).
The Reptile Ear
(
Princeton University Press
,
Princeton, NJ
).
34.
Yi
,
S.
,
Zhou
,
M.
,
Yu
,
Z.
,
Fan
,
P.
,
Behdad
,
N.
,
Lin
,
D.
,
Wang
,
K. X.
,
Fan
,
S.
, and
Brongersma
,
M.
(
2018
). “
Subwavelength angle-sensing photodetectors inspired by directional hearing in small animals
,”
Nat. Nanotechnol.
13
(
12
),
1143
1147
.
35.
Young
,
B. A.
,
Mathevon
,
N.
, and
Tang
,
Y.
(
2014
). “
Reptile auditory neuroethology: What do reptiles do with their hearing?
,” in
Insights from Comparative Hearing Research
, edited by
C.
Köppl
,
G. A.
Manley
,
A. N.
Popper
, and
R. R.
Fay
(
Springer
,
New York
), pp.
323
346
.
36.
Zhang
,
L.
,
Hallam
,
J.
, and
Christensen-Dalsgaard
,
J.
(
2008
). “
Modelling asymmetry in the peripheral auditory system of the lizard
,”
Artif. Life Rob.
13
(
1
),
5
9
.
You do not currently have access to this content.