When a broadband source of radiated noise transits past a fixed hydrophone, a Lloyd's mirror constructive/destructive interference pattern can be observed in the output spectrogram. By taking the spectrum of a (log) spectrum, the power cepstrum detects the periodic structure of the Lloyd's mirror fringe pattern by generating a sequence of pulses located at the fundamental quefrency and its multiples. The fundamental quefrency, which is the reciprocal of the frequency difference between adjacent destructive interference fringes, equates to the multipath delay time. An experiment is conducted where a motorboat transits past a hydrophone located about 1 m above the seafloor in very shallow water (20 m deep). The hydrophone has a frequency bandwidth of 90 kHz, and its output is sampled at 250 kHz. A cepstrogram database is compiled from multiple vessel transits, and its cepstrum-based feature vectors (along with ground-truth range data) form the input to train a convolutional neural network (CNN) so that it can predict the source range relative to the hydrophone for other (“unseen”) vessel transits. The CNN provides an accurate prediction of the instantaneous source range even when the range estimate from conventional multipath passive ranging is biased, which occurs at low grazing angles (<12°).

1.
R. J.
Urick
,
Principles of Underwater Sound
, 2nd ed. (
McGraw-Hill
,
New York
, 1975), pp.
123
125
.
2.
W. M.
Carey
, “
Lloyd's mirror-image interference effects
,”
Acoust. Today
5
(
2
),
14
20
(
2009
).
3.
A. D.
Jones
,
D. W.
Bartel
, and
P. A.
Clarke
, “
An application of range-frequency striations to seafloor inversion in shallow oceans
,” in Acoustics 2012, 567–573 (2012).
4.
D.
Kapolka
,
J. K.
Wilson
,
J. A.
Rice
, and
P.
Hursky
, “
Equivalence of the waveguide invariant and two path ray theory methods for range prediction based on Lloyd's mirror patterns
,”
Proc. Mtgs. Acoust.
4
,
070002
(
2008
).
5.
G. L.
D'Spain
and
W. A.
Kuperman
, “
Application of waveguide invariants to analysis of spectrograms from shallow water environments that vary in range and azimuth
,”
J. Acoust. Soc. Am.
106
(
5
),
2454
2468
(
1999
).
6.
E. L.
Ferguson
,
R.
Ramakrishnan
,
S. B.
Williams
, and
C. T.
Jin
, “
Deep learning approach to passive monitoring of the underwater acoustic environment
,”
J. Acoust. Soc. Am.
140
(
4
),
3351
(
2016
).
7.
B.
Borgert
,
M.
Healy
, and
J.
Tukey
, “
The quefrency analysis of time series for echoes: Cepstrum, pseudo-autocovariance, cross-cepstrum and saphe cracking
,” in
Proc. Symp. On Time Series Analysis
(
1963
), pp.
209
243
.
8.
A. M.
Noll
, “
Short-time spectrum and ‘cepstrum’ techniques for vocal-pitch detection
,”
J. Acoust. Soc. Am.
36
(
2
),
296
302
(
1964
).
9.
A. M.
Noll
, “
Cepstrum pitch determination
,”
J. Acoust. Soc. Am.
41
(
2
),
293
309
(
1967
).
10.
A. V.
Oppenheim
and
R. W.
Schafer
, “
From frequency to quefrency: A history of the cepstrum
,”
IEEE Signal Process. Mag.
21
(
5
),
95
106
(
2004
).
11.
R. B.
Randall
, “
A history of cepstrum analysis and its application to mechanical problems
,”
Mech. Syst. Signal Process.
97
,
3
19
(
2017
).
12.
B. Z.
Steinberg
,
M. J.
Beran
,
S. H.
Chin
, and
J. H.
Howard
, Jr.
, “
A neural network approach to source localization
,”
J. Acoust. Soc. Am.
90
(
4
),
2081
2090
(
1991
).
13.
H.
Niu
,
E.
Reeves
, and
P.
Gerstoft
, “
Source localization in an ocean waveguide using supervised machine learning
,”
J. Acoust. Soc. Am.
142
(
3
),
1176
1188
(
2017
).
14.
H.
Niu
,
E.
Ozanich
, and
P.
Gerstoft
, “
Ship localization in Santa Barbara channel using machine learning classifiers
,”
J. Acoust. Soc. Am.
142
(
5
),
EL455
EL460
(
2017
).
15.
R.
Duan
,
K.
Yang
,
Y.
Ma
,
Q.
Yang
, and
H.
Li
, “
Moving source localization with a single hydrophone using multipath time delays in the deep ocean
,”
J. Acoust. Soc. Am.
136
(
2
),
EL159
EL165
(
2014
).
16.
R.
Kemerait
and
D.
Childers
, “
Signal detection and extraction by cepstrum techniques
,”
IEEE Trans. Inform. Theory
18
(
6
),
745
759
(
1972
).
17.
J. S.
Bendat
and
A. G.
Piersol
,
Engineering applications of correlation and spectral analysis
(
Wiley
, Hoboken, NJ,
1993
), Sec. 6.2, pp.
145
153
.
18.
J. S.
Bendat
and
A. G.
Piersol
,
Random Data: Analysis and Measurement Procedures
, 1st ed. (
Wiley
,
New York
, 1971), Chap. 3, pp.
56
98
.
19.
J. S.
Bendat
and
A. G.
Piersol
,
Random Data: Analysis and Measurement Procedures
, 1st ed. (
Wiley
,
New York
, 1971), Chap. 1, pp.
1
36
.
20.
J. S.
Bendat
and
A. G.
Piersol
,
Random Data: Analysis and Measurement Procedures
, 1st ed. (
Wiley
,
New York
, 1971), Chap. 10, pp.
344
380
.
21.
S.
Furui
, “
Cepstral analysis technique for automatic speaker verification
,”
IEEE Trans. Acoust., Speech Signal Process.
29
(
2
),
254
272
(
1981
).
22.
A.
Valada
,
L.
Spinello
, and
W.
Burgard
, “
Deep feature learning for acoustics-based terrain classification
,” in
Robotics Research
(
Springer
,
New York
,
2018
), pp.
21
37
.
23.
E. L.
Ferguson
,
R.
Ramakrishnan
,
S. B.
Williams
, and
C. T.
Jin
, “
Convolutional neural networks for passive monitoring of a shallow water environment using a single sensor
,” in
2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
(
2017
), pp.
2657
2661
.
24.
E. L.
Ferguson
,
S. B.
Williams
, and
C. T.
Jin
, “
Sound source localization in a multipath environment using convolutional neural networks
,” in
2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
(
2018
), pp.
2386
2390
.
25.
V.
Nair
and
G. E.
Hinton
, “
Rectified linear units improve restricted Boltzmann machines
,” in
Proceedings of the 27th International Conference on Machine Learning (ICML-10)
(
2010
), pp.
807
814
.
26.
D. P.
Kingma
and
J.
Ba
, “
Adam: A method for stochastic optimization
,” arXiv:1412.6980 (
2014
).
27.
K.
He
,
X.
Zhang
,
S.
Ren
, and
J.
Sun
, “
Delving deep into rectifiers: Surpassing human-level performance on Imagenet classification
,” in
Proceedings of the IEEE International Conference on Computer Vision
(
2015
), pp.
1026
1034
.
28.
S.
Ioffe
and
C.
Szegedy
, “
Batch normalization: Accelerating deep network training by reducing internal covariate shift
,” in
International Conf. on Machine Learning
(
2015
), pp.
448
456
.
29.
N.
Srivastava
,
G.
Hinton
,
A.
Krizhevsky
,
I.
Sutskever
, and
R.
Salakhutdinov
, “
Dropout: A simple way to prevent neural networks from overfitting.
,”
J. Mach. Learn. Res.
15
(
1
),
1929
1958
(
2014
).
30.
A.
Krogh
and
J. A.
Hertz
, “
A simple weight decay can improve generalization
,” in
Proceedings of Advances in Neural Information Processing Systems 1991
(
NIPS
,
1991
), pp.
950
957
.
31.
Y.
Bengio
, “
Practical recommendations for gradient-based training of deep architectures
,” in
Neural Networks: Tricks of the Trade
(
Springer
,
New York
,
2012
), pp.
437
478
.
32.
M.
Abadi
,
A.
Agarwal
,
P.
Barham
,
E.
Brevdo
,
Z.
Chen
,
C.
Citro
,
G. S.
Corrado
,
A.
Davis
,
J.
Dean
,
M.
Devin
,
S.
Ghemawat
,
I.
Goodfellow
,
A.
Harp
,
G.
Irving
,
M.
Isard
,
Y.
Jia
,
R.
Jozefowicz
,
L.
Kaiser
,
M.
Kudlur
,
J.
Levenberg
,
D.
Mané
,
R.
Monga
,
S.
Moore
,
D.
Murray
,
C.
Olah
,
M.
Schuster
,
J.
Shlens
,
B.
Steiner
,
I.
Sutskever
,
K.
Talwar
,
P.
Tucker
,
V.
Vanhoucke
,
V.
Vasudevan
,
F.
Viégas
,
O.
Vinyals
,
P.
Warden
,
M.
Wattenberg
,
M.
Wicke
,
Y.
Yu
, and
X.
Zheng
, “
TensorFlow: Large-scale machine learning on heterogeneous systems
” (
2015
), software available at https://www.tensorflow.org/ (Last viewed November 1, 2018).
33.
L. M.
Brekhovskikh
and
Y. P.
Lysanov
, “
Scattering and absorption of sound by gas bubbles in water
,” in
Fundamentals of Ocean Acoustics
(
Springer
,
New York
,
2003
), pp.
250
264
.
34.
L.
Bjørnø
, “
Scattering of sound
,” in
Applied Underwater Acoustics
, edited by
T.
Neighbors
and
D.
Bradley
(
Elsevier
,
New York
,
2017
), Chap. 5.
35.
J. W.
Caruthers
and
J. C.
Novarini
, “
Modeling bistatic bottom scattering strength including a forward scatter lobe
,”
IEEE J. Ocean. Eng.
18
(
2
),
100
107
(
1993
).
36.
D.
Jackson
and
M.
Richardson
,
High-Frequency Seafloor Acoustics
(
Springer Science and Business Media
,
New York
,
1989
), Chap. 13.
37.
I. S.
Gradshteyn
and
I. M.
Ryzhik
,
Table of Integrals, Series, and Products
, 7th ed. (
Academic
,
London, UK
,
2007
), Sec. 4.397, p.
589
.
38.
I. S.
Gradshteyn
and
I. M.
Ryzhik
,
Table of Integrals, Series, and Products
, 7th ed. (
Academic
,
London, UK
,
2007
), Sec. 1.448, p.
49
.
You do not currently have access to this content.