Audible nasal emission is a speech disorder that involves undesired sound generated by airflow into the nasal cavity during production of oral sounds. This disorder is associated with small-to-medium sized velopharyngeal openings. These openings induce turbulence in the nasal cavity, which in turn produces sound. The purpose of this study is to examine the aeroacoustic mechanisms that generate turbulent sound during production of a sibilant /s/ with and without a small opening of the velopharyngeal valve. The models are based on two pediatric subjects who were diagnosed with severe audible nasal emission. The geometries were delineated from computed tomography scans taken while the subjects were sustaining a sibilant sound. Large eddy simulation with the Ffowcs Williams and Hawkings analogy was used to predict the flow behavior and its acoustic characterization. It shows that the majority of the acoustic energy is produced by surface loading, which is related to dipole sources that resonate in the nasal cavity. The quadrupole source term that is associated with the unsteady shear layers is seen to be less significant. It also shows that closure of the velopharyngeal valve changes the far-field spectrum significantly because aeroacoustic mechanisms in the nasal cavity are eliminated.

1.
Blake
,
W. K.
(
1986
).
Mechanics of Flow-Induced Sound and Vibration Volume 1: General Concepts and Elementary Sources
(
Academic
,
Orlando, FL
)
2.
Bunton
,
K.
, and
Story
,
B. H.
(
2012
). “
The relation of nasality and nasalance to nasal port area based on a computational model
,”
Cleft Palate-Craniofac. J.
49
,
741
749
.
3.
Curle
,
N.
(
1955
). “
The influence of solid boundaries upon aerodynamic sound
,”
Proc. R. Soc. A Math. Phys. Eng. Sci.
231
,
505
514
.
4.
Ferziger
,
J. H.
, and
Perić
,
M.
(
2012
).
Computational Methods for Fluid Dynamics
, 3rd ed. (
Springer
,
Berlin
).
5.
Ffowcs Williams
,
J. E.
, and
Hawkings
,
D. L.
(
1969
). “
Sound generation by turbulence and surfaces in arbitrary motion
,”
Philos. Trans. R. Soc. A Math. Phys. Eng. Sci.
264
,
321
342
.
6.
Giles
,
M. B.
(
1990
). “
Nonreflecting boundary conditions for Euler equation calculations
,”
AIAA J.
28
,
2050
2058
.
7.
Howe
,
M. S.
(
1998
).
Aeroacoustics of Fluid-Structure Interactions
(
Cambridge University Press
,
Cambridge, UK
).
8.
Kent
,
R. D.
, and
Read
,
C.
(
1992
).
The Acoustic Analysis of Speech
, 2nd ed. (
Singular
,
San Diego, CA
).
9.
Krane
,
M. H.
(
2005
). “
Aeroacoustic production of low-frequency unvoiced speech sounds
,”
J. Acoust. Soc. Am.
118
,
410
427
.
10.
Kummer
,
A. W.
,
Briggs
,
M.
, and
Lee
,
L.
(
2003
). “
The relationship between the characteristics of speech and velopharyngeal gap size
,”
Cleft Palate-Craniofac. J.
40
,
590
596
.
11.
Kummer
,
A. W.
,
Curtis
,
C.
,
Wiggs
,
M.
,
Lee
,
L.
, and
Strife
,
J. L.
(
1992
). “
Comparison of velopharyngeal gap size in patients with hypernasality, hypernasality and nasal emission, or nasal turbulence (rustle) as the primary speech characteristic
,”
Cleft Palate-Craniofac. J.
29
,
152
156
.
12.
Ladefoged
,
P.
(
1963
). “
Some physiological parameters in speech
,”
Lang. Speech
6
,
109
119
.
13.
MacKay
,
I. R.
, and
Kummer
,
A. W.
(
2005
). “
The MacKay-Kummer SNAP Test-R simplified nasometric assessment procedures
,” in
Nasometer II Model 6450 Instruction Manual
(
PENTAX Medical
,
Montvale, NJ
).
14.
McWilliams
,
B. J.
,
Morris
,
H. L.
, and
Shelton
,
R. L.
(
1990
).
Cleft Palate Speech
, 2nd ed. (
Decker
,
Philadelphia
).
15.
Mittal
,
R.
,
Erath
,
B. D.
, and
Plesniak
,
M. W.
(
2013
). “
Fluid dynamics of human phonation and speech
,”
Annu. Rev. Fluid Mech.
45
,
437
467
.
16.
Nicoud
,
F.
, and
Ducros
,
F.
(
1999
). “
Subgrid-scale stress modelling based on the square of the velocity gradient tensor
,”
Flow, Turbul. Combust.
62
,
183
200
.
17.
Nozaki
,
K.
,
Yoshinaga
,
T.
, and
Wada
,
S.
(
2014
). “
Sibilant/s/simulator based on computed tomography images and dental casts
,”
J. Dent. Res.
93
,
207
211
.
18.
PENTAX Medical
(
2010
).
Nasometer II Model 6450 Instruction Manual
, Issue C (
PENTAX Medical
,
Montvale, NJ
).
19.
Peterson-Falzone
,
S. J.
,
Hardin-Jones
,
M. A.
, and
Karnell
,
M. P.
(
2010
).
Cleft Palate Speech
, 4th ed. (
Mosby/Elsevier
,
St. Louis, MO
),
432
pp.
20.
Pont
,
A.
,
Guasch
,
O.
,
Baiges
,
J.
,
Codina
,
R.
, and
van Hirtum
,
A.
(
2019
). “
Computational aeroacoustics to identify sound sources in the generation of sibilant /s/
,”
Int. J. Numer. Method. Biomed. Eng.
35
,
e3153
.
21.
Pope
,
S. B.
(
2000
).
Turbulent Flows
(
Cambridge University Press
,
Cambridge, UK
).
22.
Proudman
,
I.
(
1952
). “
The generation of noise by isotropic turbulence
,”
Proc. R. Soc. A Math. Phys. Eng. Sci.
214
,
119
132
.
23.
Richardson
,
L. F.
(
1911
). “
The approximate arithmetical solution by finite differences of physical problems involving differential equations
,”
Philos. Trans. R. Soc. London. Ser. A
210
,
307
357
.
24.
Shadle
,
C. H.
(
1991
). “
The effect of geometry on source mechanisms of fricative consonants
,”
J. Phonet.
19
,
409
424
.
25.
Sundström
,
E.
(
2017
). “
Flow instabilities in centrifugal compressors at low mass flow rate
,” Doctoral dissertation,
Royal Institute of Technology
,
Stockholm, Sweden
.
26.
Sundström
,
E.
, and
Oren
,
L.
(
2019
). “
Pharyngeal flow simulations during sibilant sound in a patient-specific model with velopharyngeal insufficiency
,”
J. Acoust. Soc. Am.
145
,
3137
3145
.
27.
Sundström
,
E.
,
Semlitsch
,
B.
, and
Mihăescu
,
M.
(
2018a
). “
Generation mechanisms of rotating stall and surge in centrifugal compressors
,”
Flow, Turbul. Combust.
100
,
705
719
.
28.
Sundström
,
E.
,
Semlitsch
,
B.
, and
Mihăescu
,
M.
(
2018b
). “
Acoustic signature of flow instabilities in radial compressors
,”
J. Sound Vib.
434
,
221
236
.
29.
Trost
,
J. E.
(
1981
). “
Articulatory additions to the classical description of the speech of persons with left palate
,”
Cleft Palate J.
18
,
193
203
.
30.
Van Hirtum
,
A.
,
Grandchamp
,
X.
,
Cisonni
,
J.
,
Nozaki
,
K.
, and
Bailliet
,
H.
(
2012
). “
Numerical and experimental exploration of flow through a teeth-shaped nozzle
,”
Adv. Appl. Fluid Mech.
11
,
87
117
.
31.
Yoshinaga
,
T.
,
Nozaki
,
K.
, and
Wada
,
S.
(
2018
). “
Experimental and numerical investigation of the sound generation mechanisms of sibilant fricatives using a simplified vocal tract model
,”
Phys. Fluids
30
,
035104
.
You do not currently have access to this content.