In sound field reproduction and sound field control systems, the acoustic transfer functions between a set of sources and an extended reproduction area need to be accurately estimated in order to achieve good performance. This implies that large amounts of measurements should be performed if the area is large compared to the wavelengths of interest. In this paper, a method for reconstructing these transfer functions in highly damped conditions is proposed by using only a small number of measurements in the reproduction area. The source radiation is modeled with the spherical harmonics basis and its amplitude coefficients are fitted with Bayesian inference. This approach is validated in a sound field control experiment where a set of 12 control loudspeakers attenuate the sound pressure level generated by a set of six primary loudspeakers in a quiet zone while minimizing their radiation into a listening zone. The performance of the approach is studied by analyzing the sound field reconstruction and the sound field control performance. It is shown that it is possible to get—with few measurements and the source radiation model—results similar to those achieved using a dense grid of transfer function measurements.

1.
T.
Betlehem
,
W.
Zhang
,
M. A.
Poletti
, and
T. D.
Abhayapala
, “
Personal sound zones: Delivering interface-free audio to multiple listeners
,”
IEEE Signal Process. Mag.
32
(
2
),
81
91
(
2015
).
2.
W.
Zhang
,
P. N.
Samarasinghe
,
H.
Chen
, and
T. D.
Abhayapala
, “
Surround by sound: A review of spatial audio recording and reproduction
,”
Appl. Sci.
7
(
5
),
1
19
(
2017
).
3.
J.-W.
Choi
and
Y.-H.
Kim
, “
Generation of an acoustically bright zone with an illuminated region using multiple sources
,”
J. Acoust. Soc. Am.
111
(
4
),
1695
1700
(
2002
).
4.
M.
Poletti
, “
An investigation of 2-D multizone surround sound systems
,” in
Proceedings of the 125th AES International Convention
, San Francisco (October 2–5,
2008
).
5.
J.-H.
Chang
and
F.
Jacobsen
, “
Sound field control with a circular double-layer array of loudspeakers
,”
J. Acoust. Soc. Am.
131
(
6
),
4518
4525
(
2012
).
6.
Y. J.
Wu
and
T. D.
Abhayapala
, “
Spatial multizone soundfield reproduction: Theory and design
,”
IEEE Trans. Audio, Speech, Lang. Process.
19
(
6
),
1711
1720
(
2011
).
7.
M. B.
Møller
,
M.
Olsen
, and
F.
Jacobsen
, “
A hybrid method combining synthesis of a sound field and control of acoustic contrast
,” in
Proceedings in the AES 132nd International Convention
, Budapest, Hungary (April 26–29,
2012
).
8.
M. A.
Poletti
and
T. D.
Abhayapala
, “
Interior and exterior sound field control using general two-dimensional first-order sources
,”
J. Acoust. Soc. Am.
129
(
1
),
234
244
(
2011
).
9.
W.
Jin
and
W. B.
Kleijn
, “
Theory and design of multizone soundfield reproduction using sparse methods
,”
IEEE/ACM Trans. Audio, Speech, Lang. Process.
23
(
12
),
2343
2355
(
2015
).
10.
M.
Olsen
and
M. B.
Møller
, “
Sound zones: On the effect of ambient temperature variations in feed-forward systems
,” in Audio Engineering Society Convention 142, Audio Engineering Society (
2017
).
11.
F. M.
Heuchel
,
D.
Caviedes Nozal
,
F. T.
Agerkvist
, and
J.
Brunskog
, “
Sound field control for reduction of noise from outdoor concerts
,” in
the 145th AES International Convention
, New York City (October 17–20,
2018
), pp.
1
8
.
12.
M. B.
Møller
and
M.
Olsen
, “
Sound zones: On performance prediction of contrast control methods
,” in
Proceedings of the 2016 AES International Conference on Sound Field Control
, Guildford, UK (July 18–20,
2016
).
13.
M. A.
Poletti
,
F. M.
Fazi
, and
P. A.
Nelson
, “
Sound reproduction systems using variable-directivity loudspeakers
,”
J. Acoust. Soc. Am.
129
(
3
),
1429
1438
(
2011
).
14.
F.
Jacobsen
,
M.
Olsen
,
M.
Møller
, and
F. T.
Agerkvist
, “
A comparison of two strategies for generating sound zones in a room
,” in
Proceedings of the 18th International Congress on Sound and Vibration International Institute of Acoustics and Vibration
, Rio de Janeiro, Brazil (July 10–14,
2011
).
15.
S.
Koyama
,
K.
Furuya
,
Y.
Haneda
, and
H.
Saruwatari
, “
Source-location-informed sound field recording and reproduction
,”
IEEE J. Sel. Top. Signal Process.
9
(
5
),
881
894
(
2015
).
16.
T.
Okamoto
and
A.
Sakaguchi
, “
Experimental validation of spatial Fourier transform-based multiple sound zone generation with a linear loudspeaker array
,”
J. Acoust. Soc. Am.
141
(
3
),
1769
1780
(
2017
).
17.
S. J.
Elliott
,
J.
Cheer
,
J.-W.
Choi
, and
Y.
Kim
, “
Robustness and regularization of personal audio systems
,”
IEEE Trans. Audio, Speech, Lang. Process.
20
(
7
),
2123
2133
(
2012
).
18.
Q.
Zhu
,
P.
Coleman
,
M.
Wu
, and
J.
Yang
, “
Robust acoustic contrast control with reduced in-situ measurement by acoustic modeling
,”
J. Audio Eng. Soc.
65
(
6
),
460
473
(
2017
).
19.
J.-H.
Chang
and
F.
Jacobsen
, “
Experimental validation of sound field control with a circular double-layer array of loudspeakers
,”
J. Acoust. Soc. Am.
133
(
4
),
2046
2054
(
2013
).
20.
J. H.
Chang
,
J.
Jensen
, and
F.
Agerkvist
, “
Shift of the acoustic center of a closed-box loudspeaker in a linear array: Investigation using the beamforming technique
,”
J. Audio Eng. Soc.
63
(
4
),
257
266
(
2015
).
21.
J.-H.
Chang
,
C.-H.
Lee
,
J.-Y.
Park
, and
Y.-H.
Kim
, “
A realization of sound focused personal audio system using acoustic contrast control
,”
J. Acoust. Soc. Am.
125
(
4
),
2091
2097
(
2009
).
22.
J. D.
Maynard
,
E. G.
Williams
, and
Y.
Lee
, “
Nearfield acoustic holography: I. Theory of generalized holography and the development of NAH
,”
J. Acoust. Soc. Am.
78
(
4
),
1395
1413
(
1985
).
23.
J.
Hald
, “
Basic theory and properties of statistically optimized near-field acoustical holography
,”
J. Acoust. Soc. Am.
125
(
4
),
2105
2120
(
2009
).
24.
M. R.
Bai
, “
Application of BEM (boundary element method)-based acoustic holography to radiation analysis of sound sources with arbitrarily shaped geometries
,”
J. Acoust. Soc. Am.
92
(
1
),
533
549
(
1992
).
25.
Z.
Wang
and
S. F.
Wu
, “
Helmholtz equation–least-squares method for reconstructing the acoustic pressure field
,”
J. Acoust. Soc. Am.
102
(
4
),
2020
2032
(
1997
).
26.
A.
Sarkissian
, “
Method of superposition applied to patch near-field acoustic holography
,”
J. Acoust. Soc. Am.
118
(
2
),
671
678
(
2005
).
27.
E.
Fernandez-Grande
,
A.
Xenaki
, and
P.
Gerstoft
, “
A sparse equivalent source method for near-field acoustic holography
,”
J. Acoust. Soc. Am.
141
(
1
),
532
542
(
2017
).
28.
J.
Antoni
, “
A Bayesian approach to sound source reconstruction: Optimal basis, regularization, and focusing
,”
J. Acoust. Soc. Am.
131
,
2873
2890
(
2012
).
29.
E.
Zhang
,
J.
Antoni
,
B.
Dong
, and
H.
Snoussi
, “
Bayesian space-frequency separation of wide-band sound sources by a hierarchical approach
,”
J. Acoust. Soc. Am.
132
(
5
),
3240
3250
(
2012
).
30.
W. T.
Kung
,
Y. Y.
Lee
, and
H. Y.
Sun
, “
Sound leakage identification for an enclosed room using the probabilistic approach and model class selection index: An experiment
,”
J. Sound Vib.
310
(
4-5
),
776
781
(
2008
).
31.
A.
Xenaki
,
E.
Fernandez-Grande
, and
P.
Gerstoft
, “
Block-sparse beamforming for spatially extended sources in a Bayesian formulation
,”
J. Acoust. Soc. Am.
140
(
3
),
1828
1838
(
2016
).
32.
M.
Sadri
,
J.
Brunskog
, and
D.
Younesian
, “
Application of a Bayesian algorithm for the Statistical Energy model updating of a railway coach
,”
Appl. Acoust.
112
,
84
107
(
2016
).
33.
A.
Pereira
,
J.
Antoni
, and
Q.
Leclère
, “
Empirical Bayesian regularization of the inverse acoustic problem
,”
Appl. Acoust.
97
,
11
29
(
2015
).
34.
F. M.
Heuchel
,
D.
Caviedes Nozal
,
J.
Brunskog
,
E. F.
Grande
, and
F. T.
Agerkvist
, “
An adaptive, data driven sound field control strategy for outdoor concerts
,” in
Proceedings of the 3rd AES International Conference on Sound Reinforcement—Open Air Venues
, Struer, Denmark (August 30–September 2,
2017
).
35.
W.-H.
Cho
, “
Sound source modelling and synthesis by the equivalent source method for reproducing the spatial radiation characteristics
,” in
Proceedings of the 2016 AES International Conference on Sound Field Control
, Guildford, UK (July 18–20,
2016
).
36.
E. G.
Williams
, “
Spherical waves
,” in
Fourier Acoustics: Sound Radiation and Nearfield Acoustical Holography
(
Elsevier
,
New York
,
1999
), Chap. 6.
37.
F.
Jacobsen
and
P.
Juhl
, “
Sound radiation and scattering
,” in
Fundamentals of General Linear Acoustics
, 1st ed. (
Wiley
,
New York
,
2013
), Chap. 9, pp.
187
202
.
38.
A.
Gelman
,
J. B.
Carlin
,
H. S.
Stern
,
D. B.
Dunson
,
A.
Vehtari
, and
D. B.
Rubin
, “
Probability and inference
,” in
Bayesian Data Analysis
, 3rd ed. (
Chapman and Hall
,
Boca Raton, FL
,
2013
), Chap. 1, pp.
1
25
.
39.
D.
Dowson
and
A.
Wragg
, “
Maximum-entropy distributions having prescribed first and second moments
,”
IEEE Trans. Inf. Theory
19
(
5
),
689
693
(
1973
).
40.
R. G.
Gallager
, “
Random processes and noise
,” in
Principles of Digital Communication
(
Cambridge University Press
,
Cambridge
,
2008
), Chap. 7, pp.
227
232
.
41.
J.
Escolano
,
N.
Xiang
,
J. M.
Perez-Lorenzo
,
M.
Cobos
, and
J. J.
Lopez
, “
A Bayesian direction-of-arrival model for an undetermined number of sources using a two-microphone array
,”
J. Acoust. Soc. Am.
135
(
2
),
742
753
(
2014
).
42.
J. M.
Bardsley
, “
Markov chain Monte Carlo methods for linear inverse problems
,” in
Computational Uncertainty Quantification for Inverse Problems
, 1st ed. (
SIAM
,
Philadelphia, PA
,
2018
), Chap. 5.
43.
Stan
, “
Stan modeling language user's guide and reference manual
,”
User's Manual Version 2.18.0
(
2018
).
44.
C. M.
Bishop
, “
The EM algorithm in general
,” in
Pattern recognition and machine learning
, 1st ed. (
Springer
,
New York
,
2006
), Chap. 9.4.
45.
S. A.
Verburg
and
E.
Fernandez-Grande
, “
Reconstruction of the sound field in a room using compressive sensing
,”
J. Acoust. Soc. Am.
143
(
6
),
3770
3779
(
2018
).
46.
S.
Müller
and
P.
Massarani
, “
Transfer-function measurement with sweeps
,”
J. Audio Eng. Soc.
49
(
6
),
443
471
(
2001
).
47.
W.-L.
Loh
, “
On Latin hypercube sampling
,”
Ann. Stat.
24
(
5
),
2058
2080
(
1996
).
48.
S. J.
Elliott
and
M.
Jones
, “
An active headrest for personal audio minimally radiating sources for personal audio
,”
J. Acoust. Soc. Am.
119
(
5
),
2702
2709
(
2006
).
49.
J.
Brynjarsdóttir
and
A.
O'Hagan
, “
Learning about physical parameters: The importance of model discrepancy
,”
Inverse Probl.
30
(
11
),
114007
(
2014
).
50.
D.
Caviedes Nozal
and
J.
Brunskog
, “
Parameter optimization of forward sound propagation models using Bayesian inference
,” in
Proceedings of Euronoise 2018
, Crete, Greece (May 27–31,
2018
), pp.
2301
2308
.
51.
J.
Berger
,
D.
Dutykh
, and
N.
Mendes
, “
On the optimal experiment design for heat and moisture parameter estimation
,”
Exp. Therm. Fluid Sci.
81
,
109
122
(
2017
).
You do not currently have access to this content.