A broadband equivalent acoustic source distribution can be used to model the sound field near a high-speed jet. Such models must account for the spatiospectral variation of the sound levels. This work presents a technique for obtaining such a model using a spectral decomposition method associated with large and fine-scale turbulent mixing noise to create broadband equivalent source distributions for each noise type. The large-scale turbulent mixing noise is represented by frequency-dependent wavepackets, while the fine-scale turbulent mixing noise is modeled as a frequency-dependent incoherent, extended source distribution. This technique is applied to acoustical measurements from an ideally expanded, unheated Mach 1.8 jet. The wavepackets model the sound field levels in the maximum radiation region, but the second incoherent source distribution is required to obtain the levels at the other locations. The combination of the incoherent source distribution and the wavepacket provides a broadband, equivalent acoustic source representation that adequately models the sound field for Strouhal numbers between 0.04 and 0.25. At higher Strouhal numbers, better agreement is obtained when accounting for a frequency-dependent shift in the apparent acoustic source region. This frequency-dependent source region is more important closer to the jet than in the far field.

1.
M.
Akamine
,
Y.
Nakanishi
,
K.
Okamoto
,
S.
Teramoto
,
T.
Okunuki
, and
S.
Tsutsumi
, “
Acoustic phenomena from correctly expanded supersonic jet impinging on inclined plate
,”
AIAA J.
53
,
2061
2067
(
2015
).
2.
M.
Akamine
,
K.
Okamoto
,
K. L.
Gee
,
T. B.
Neilsen
,
S.
Teramoto
,
T.
Okunuki
, and
S.
Tsutsumi
, “
Effect of nozzle–plate distance on acoustic phenomena from supersonic impinging jet
,”
AIAA J.
54
,
1943
1952
(
2018
).
3.
M.
Ochmann
, “
The source simulation technique for acoustic radiation problems
,”
Acustica
81
,
512
527
(
1995
), available at https://www.ingentaconnect.com/content/dav/aaua/1995/00000081/00000006/art00005.
4.
C. K. W.
Tam
,
N. N.
Pasouchenko
, and
R. H.
Schlinker
, “
Noise source distribution in supersonic jets
,”
J. Sound Vib.
291
,
192
201
(
2006
).
5.
R.
H.
Schlinker
,
S. A.
Liljenberg
,
D. R.
Polak
,
K. A.
Post
,
C. T.
Chipman
, and
A. M.
Stern
, “
Supersonic jet noise source characteristics and propagation: Engine and model scale
,” AIAA Paper 2007-3623 (
2007
).
6.
M. J.
Lighthill
, “
On Sound generated aerodynamically. Part 1. General Theory
,”
Proc. R. Soc. London
211
,
564
587
(
1952
).
7.
D. K.
McLaughlin
,
C. W.
Kuo
, and
D.
Papamoschou
, “
Experiments on the effect of ground reflections on supersonic jet noise
,” AIAA Paper 2008-22 (
2008
).
8.
N. P.
Valdivia
and
E. G.
Williams
, “
Study of the comparison of the methods of equivalent sources and boundary element methods for near-field acoustic holography
,”
J. Acoust. Soc. Am.
120
,
3694
3705
(
2006
).
9.
J.
Hald
, “
Basic theory and properties of statistically optimized near-field acoustical holography
,”
J. Acoust. Soc. Am.
125
,
2105
2120
(
2009
).
10.
A. T.
Wall
,
K. L.
Gee
,
T. B.
Neilsen
,
R. L.
McKinley
, and
M. M.
James
, “
Military jet noise source imaging using multisource statistically optimized near-field acoustical holography
,”
J. Acoust. Soc. Am.
139
,
1938
1950
(
2016
).
11.
A. T.
Wall
,
K. L.
Gee
,
K. M.
Leete
,
T. B.
Neilsen
,
T. A.
Stout
, and
M. M.
James
, “
Partial-field decomposition analysis of full-scale supersonic jet noise using optimized-location virtual references
,”
J. Acoust. Soc. Am.
144
,
1356
1367
(
2018
).
12.
S. S.
Lee
and
J.
Bridges
, “
Phased-array measurements of single flow hot jets
,” AIAA Paper 2005-2842 (
2005
).
13.
D.
Papamoschou
, “
Imagining of distributed directional noise sources
,”
J. Sound Vib.
330
,
2265
2280
(
2011
).
14.
T.
Suzuki
and
T.
Colonius
, “
Instability waves in a subsonic round jet detected using a near-field phased microphone array
,”
J. Fluid Mech.
565
,
197
226
(
2006
).
15.
T.
Suzuki
, “
Coherent noise sources of a subsonic round jet investigated using hydrodynamics and acoustic phased-array microphones
,”
J. Fluid Mech.
730
,
659
698
(
2013
).
16.
B. M.
Harker
,
K. L.
Gee
,
T. B.
Neilsen
,
A. T.
Wall
, and
M. M.
James
, “
Beamforming-based wavepacket model for noise environment predictions of tactical aircraft
,” AIAA Paper 2017-4048 (
2017
).
17.
J.
Morgan
,
T. B.
Neilsen
,
K. L.
Gee
,
A. T.
Wall
, and
M. M.
James
, “
Simple-source model of high-power jet aircraft noise
,”
Noise Control Eng. J.
60
,
435
449
(
2012
).
18.
C. K. W.
Tam
,
M.
Golebiowski
, and
J. M.
Seiner
, “
On the two components of turbulent mixing noise from supersonic jets
,” AIAA Paper 96-1716 (
1996
).
19.
C. K. W.
Tam
and
K. B. M. Q.
Zaman
, “
Subsonic jet noise from nonaxisymmetric and tabbed nozzles
,”
AIAA J.
38
,
592
599
(
2000
).
20.
R. H.
Schlinker
, “Supersonic jet noise experiments
,” Ph.D. thesis,
Department of Aerospace Engineering, University of Southern California
,
Los Angeles, CA
,
1975
.
21.
K.
Viswanathan
, “
Analysis of the two similarity components of turbulent mixing noise
,”
AIAA J.
40
,
1735
1744
(
2002
).
22.
C. K. W.
Tam
,
K.
Viswanathan
,
K. K.
Ahuja
, and
J.
Panda
, “
The sources of jet noise: Experimental evidence
,”
J. Fluid Mech.
615
,
253
292
(
2008
).
23.
T. B.
Neilsen
,
K. L.
Gee
,
A. T.
Wall
, and
M. M.
James
, “
Similarity spectra analysis of high-performance jet aircraft noise
,”
J. Acoust. Soc. Am.
133
,
2116
2125
(
2013
).
24.
P. J.
Morris
, “
A note on noise generation by large scale turbulent structures in subsonic and supersonic jets
,”
Int. J. Aeroacoust.
8
,
301
315
(
2009
).
25.
T. B.
Neilsen
,
K. L.
Gee
,
B. M.
Harker
, and
M. M.
James
, “
Level-educed wavepacket representation of noise radiation from a high-performance military aircraft
,” AIAA Paper 2016–1880 (
2016
).
26.
D.
Papamoschou
, “
Wavepacket modeling of jet noise sources
,” AIAA Paper 2011-2835 (
2011
).
27.
D.
Papamoschou
, “
Prediction of jet noise shielding
,” AIAA Paper 2010-0653 (
2010
).
28.
A.
Michalke
, “
On the effect of spatial source coherence on the radiation of jet noise
,”
J. Sound Vib.
55
,
377
394
(
1977
).
29.
D. G.
Crighton
and
P.
Huerre
, “
Shear-layer pressure fluctuations and superdirective acoustic sources
,”
J. Fluid Mech.
220
,
355
368
(
1990
).
30.
P.
Jordan
and
T.
Colonius
, “
Wave packets and turbulent jet noise
,”
Ann. Rev. Fluid Mech.
45
,
173
195
(
2013
).
31.
O. T.
Schmidt
,
A.
Towne
,
G.
Rigas
,
T.
Colonius
, and
G. A.
Brès
, “
Spectral analysis of jet turbulence
,”
J. Fluid Mech.
855
,
953
982
(
2018
).
32.
O.
Semeraro
,
L.
Lesshafft
,
V.
Jaunet
, and
P.
Jordan
, “
Modeling of coherent structures in a turbulent jet as global linear instability wavepackets: Theory and experiment
,”
Int. J. Heat Fluid Flow
62
,
24
32
(
2016
).
33.
X.
Garnaud
,
L.
Lesshafft
,
P. J.
Schmid
, and
P.
Huerre
, “
The preferred mode of incompressible jets: Linear frequency response analysis
,”
J. Fluid Mech.
716
,
189
202
(
2013
).
34.
A.
Towne
,
T.
Colonius
,
P.
Jordan
,
A. V. G.
Cavalieri
, and
G. A.
Brès
, “
Stochastic and nonlinear forcing of wavepackets in a Mach 0.9 jet
,” AIAA Paper 2015-2217 (
2015
).
35.
O. T.
Schmidt
and
P. J.
Schmid
, “
Statistics of stochastics: A conditional space-time POD formalism for intermittent and rare events with application to jet noise
,” arXiv:1811.07962 (
2018
).
36.
K.
Sasaki
,
A. V.
Cavalieri
,
P.
Jordan
,
O. T.
Schmidt
,
T.
Colonius
, and
G. A.
Brès
, “
High-frequency wavepackets in turbulent jets
,”
J. Fluid Mech.
830
,
R2-1
R2-12
(
2017
).
37.
J.
Jeun
,
J. W.
Nichols
, and
M. R.
Jovanović
, “
Input-output analysis of high-speed axisymmetric isothermal jet noise
,”
Phys. Fluids
28
,
047101
(
2016
).
38.
J.
Ffowcs Williams
, “
The noise from turbulence convected at high speed
,”
Philos. Trans. R. Soc. A
255
,
469
503
(
1963
).
39.
B. M.
Harker
,
T. B.
Neilsen
,
K. L.
Gee
,
A. T.
Wall
, and
M. M.
James
, “
Spatiotemporal correlation analysis of jet noise from a high-performance military aircraft
,”
AIAA J.
54
(
5
),
1554
1566
(
2016
).
40.
C.
Bailly
and
K.
Fujii
, “
High-speed jet noise
,”
Mech. Eng. Rev.
13
,
1
13
(
2016
).
41.
A. V. G.
Cavalieri
and
A.
Agarwal
, “
Coherence decay and its impact on sound radiation by wavepackets
,”
J. Fluid Mech.
748
,
399
415
(
2014
).
42.
R.
Reba
,
S.
Narayanan
, and
T.
Colonius
, “
Wave-packet models for large-scale mixing noise
,”
Int. J. Aeroacoust.
9
,
533
558
(
2010
).
43.
A.
Sinha
,
D.
Rodriguez
,
G. A.
Bres
, and
T.
Colonius
, “
Wavepacket models for supersonic jet noise
,”
J. Fluid Mech.
742
,
71
95
(
2014
).
44.
I.
Maia
,
P.
Jordan
,
V.
Jaunet
, and
A. V.
Cavalieri
, “
Two-point wavepacket modelling of jet noise
,” AIAA Paper 2017-3380 (
2017
).
45.
W. J.
Baars
and
C. E.
Tinney
, “
Proper orthogonal decomposition-based spectral higher-order stochastic estimation
,”
Phys. Fluids
26
,
055112
(
2014
).
46.
M.
Koenig
,
A. V. G.
Cavalieri
,
P.
Jordan
,
J.
Delville
,
Y.
Gervais
, and
D.
Papamoschou
, “
Farfield filtering and source imaging of subsonic jet noise
,”
J. Sound Vib.
332
,
4067
4088
(
2013
).
47.
Y.
Du
and
P. J.
Morris
, “
Simulation of the effect of a low by-pass cooling stream on supersonic jet noise
,” AIAA Paper 2014-1402 (
2014
).
48.
R. H.
Schlinker
,
J. C.
Simonich
,
D. W.
Shannon
,
R. A.
Reba
,
T.
Colonius
,
K.
Gudmundsson
, and
F.
Ladeinde
, “
Supersonic jet noise from round and chevron nozzles: Experimental studies
,” AIAA Paper No. 2009-3257.
49.
R. H.
Schlinker
,
J. C.
Simonich
,
R. A.
Reba
,
T.
Colonius
, and
F.
Ladeinde
, “
Decomposition of high speed jet noise: Source characteristics and propagation effects
,” AIAA Paper 2008-2890 (
2008
).
50.
K.
Viswanathan
, “
Does a model-scale nozzle emit the same jet noise as a jet engine?
,”
AIAA J.
46
,
1715
1737
(
2008
).
51.
K.
Viswanathan
and
M. J.
Czech
, “
Role of jet temperature in correlating jet noise
,”
AIAA J.
47
,
1090
1106
(
2009
).
52.
A. B.
Vaughn
,
T. B.
Neilsen
,
K. L.
Gee
,
K.
Okamoto
, and
M.
Akamine
, “
Near-field spatial variation in similarity spectra decomposition of a Mach 1.8 laboratory-scale jet
,”
Proc. Mtgs. Acoust.
29
,
045004
(
2016
).
53.
J.
Liu
,
K.
Kailasanath
, and
E. J.
Gutmark
, “
Similarity spectra analysis of highly heated supersonic jets using large-eddy simulations
,” AIAA Paper 2017-0926 (
2017
).
54.
T. B.
Neilsen
,
K. L.
Gee
,
A. T.
Wall
,
M. M.
James
, and
A. A.
Atchley
, “
Comparison of supersonic full-scale and laboratory-scale jet data and the similarity spectra for turbulent mixing noise
,”
Proc. Mtgs. Acoust.
19
,
040071
(
2013
).
55.
K. M.
Leete
,
A. T.
Wall
,
K. L.
Gee
,
T. B.
Neilsen
,
B. M.
Harker
, and
M. M.
James
, “
Azimuthal coherence of the sound field in the vicinity of a high-performance military aircraft
,”
Proc. Mtgs. Acoust.
29
,
045007
(
2016
).
56.
B.
Greska
, “
Supersonic jet noise and its reduction using microjet injection
,” Ph.D. thesis,
The Florida State University, FAMU-FSU Collage of Engineering
,
Tallahassee, FL
,
2005
.
57.
K. L.
Gee
,
M.
Akamine
,
K.
Okamoto
,
T. B.
Neilsen
,
M.
Cook
,
S.
Tsutsumi
,
S.
Teramoto
, and
T.
Okuuki
, “
Characterization of supersonic laboratory-scale jet noise with vector acoustic intensity
,” AIAA Paper 2017-3519 (
2017
).
58.
T. B.
Neilsen
,
A. B
Vaughn
,
K. L.
Gee
,
M.
Akamine
,
K.
Okamoto
,
S.
Teramoto
, and
S.
Tsutsumi
, “
Level-educed wavepacket representation of Mach 1.8 laboratory-scale jet noise
,” AIAA Paper 2017-4049 (
2017
).
59.
D.
Papamoschou
,
P. J.
Morris
, and
D. K.
McLaughlin
, “
Beamformed flow-acoustic correlations in high-speed jets
,” AIAA Paper 2009-3212 (
2009
).
60.
T. A.
Stout
,
K. L.
Gee
,
T. B.
Neilsen
,
A. T.
Wall
, and
M. M.
James
, “
Source characterization of full-scale jet noise using acoustic intensity
,”
Noise Control Eng. J.
63
,
522
536
(
2015
).
61.
J. A.
Ward
,
S. H.
Swift
,
K. L.
Gee
,
T. B.
Neilsen
,
K.
Okamoto
, and
M.
Akamine
, “
Frequency-dependent jet noise source localization using cross-correlation between near and far-field microphone arrays
,”
Proc. Mtgs. Acoust.
31
,
040005
(
2017
).
62.
M.
Harper-Bourne
, “
Jet noise turbulence measurements
,” AIAA Paper 2003-3214 (
2003
).
63.
P. J.
Morris
and
K. B. M. Q.
Zaman
, “
Velocity measurements in jets with application to noise source modeling
,”
J. Sound Vib.
329
,
394
414
(
2010
).
64.
J. C.
Lau
, “
Effects of exit Mach number and temperature on mean-flow and turbulence characteristics in round jets
,”
J. Fluid Mech.
105
,
193
218
(
1981
).
65.
W. J.
Baars
,
C. E.
Tinney
,
N. E.
Murray
,
B. J.
Jansen
, and
P.
Panickar
, “
The effect of heat on turbulent mixing noise in supersonic jets
,” AIAA Paper 2011-1029 (
2011
).
66.
N. E.
Murray
and
G. W.
Lyons
, “
On the convective velocity of source events related to supersonic jet crackle
,”
J. Fluid Mech.
793
,
477
503
(
2016
).
67.
B.
Greska
and
A.
Krothapalli
, “
A near-field study of high temperature supersonic jets
,” AIAA Paper 2008-3026 (
2008
).
68.
T. R.
Troutt
and
D. K.
McLaughlin
, “
Experiments on the flow and acoustic properties of a moderate-Reynolds-number supersonic jet
,”
J. Fluid Mech.
116
,
123
156
(
1982
).
69.
C. E.
Tinney
,
L. S.
Ukeiley
, and
M. N.
Glauser
, “
Low-dimensional characteristics of a transonic jet. Part 1. Proper orthogonal decomposition
,”
J. Fluid Mech.
612
,
107
141
(
2008
).
70.
K. M.
Leete
,
A. T.
Wall
,
K. L.
Gee
,
T. B.
Neilsen
,
M. M.
James
, and
J. M.
Downing
, “
Dependence of high-performance military aircraft noise on frequency and engine power
,” AIAA Paper 2018-2826 (
2018
).
You do not currently have access to this content.