The issue of speckle statistics from ultrasound images of soft tissues such as the liver has a long and rich history. A number of theoretical distributions, some related to random scatterers or fades in optics and radar, have been formulated for pulse-echo interference patterns. This work proposes an alternative framework in which the dominant echoes are presumed to result from Born scattering from fluid-filled vessels that permeate the tissue parenchyma. These are modeled as a branching, fractal, self-similar, multiscale collection of cylindrical scatterers governed by a power law distribution relating to the number of branches at each radius. A deterministic accounting of the echo envelopes across the scales from small to large is undertaken, leading to a closed form theoretical formula for the histogram of the envelope of the echoes. The normalized histogram is found to be related to the classical Burr distribution, with the key power law parameter directly related to that of the number density of vessels vs diameter, frequently reported in the range of 2 to 4. Examples are given from liver scans to demonstrate the applicability of the theory.

1.
Abramowitz
,
M.
, and
Stegun
,
I. A.
(
1964
).
Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables
(
U.S. Government Printing Office
,
Washington, DC
).
2.
Albini
,
F. A.
, and
Nagelberg
,
E. R.
(
1962
). “
Scattering of a plane wave by an infinite inhomogeneous, dielectric cylinder—an application of the Born approximation
,”
J. Appl. Phys.
33
,
1706
1713
.
3.
Bamber
,
J. C.
, and
Dickinson
,
R. J.
(
1980
). “
Ultrasonic B-scanning: A computer simulation
,”
Phys. Med. Biol.
25
,
463
479
.
4.
Bracewell
,
R. N.
(
1965a
).
The Fourier Transform and its Applications
(
McGraw-Hill
,
New York
), Chap. 8.
5.
Bracewell
,
R. N.
(
1965b
).
The Fourier Transform and its Applications
(
McGraw-Hill
,
New York
), Chap. 12.
6.
Burckhardt
,
C. B.
(
1978
). “
Speckle in ultrasound B-mode scans
,”
IEEE Trans. Sonics Ultrason.
25
,
1
6
.
7.
Burr
,
I. W.
(
1942
). “
Cumulative frequency functions
,”
Ann. Math. Stat.
13
,
215
232
.
8.
Campbell
,
J. A.
, and
Waag
,
R. C.
(
1984a
). “
Measurements of calf liver ultrasonic differential and total scattering cross sections
,”
J. Acoust. Soc. Am.
75
,
603
611
.
9.
Campbell
,
J. A.
, and
Waag
,
R. C.
(
1984b
). “
Ultrasonic scattering properties of three random media with implications for tissue characterization
,”
J. Acoust. Soc. Am.
75
,
1879
1886
.
10.
Chivers
,
R. C.
(
1977
). “
The scattering of ultrasound by human tissues-some theoretical models
,”
Ultrasound Med. Biol.
3
,
1
13
.
11.
Cramblitt
,
R. M.
, and
Parker
,
K. J.
(
1999
). “
Generation of non-Rayleigh speckle distributions using marked regularity models
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
46
,
867
874
.
12.
Feller
,
W.
(
1948
). “
On the Kolmogorov-Smirnov limit theorems for empirical distributions
,”
Ann. Math. Statist.
19
,
177
189
.
13.
Fontaine
,
I.
,
Savery
,
D.
, and
Cloutier
,
G.
(
2002
). “
Simulation of ultrasound backscattering by red cell aggregates: Effect of shear rate and anisotropy
,”
Biophys. J.
82
,
1696
1710
.
14.
Gore
,
J. C.
, and
Leeman
,
S.
(
1977
). “
Ultrasonic backscattering from human tissue: A realistic model
,”
Phys. Med. Biol.
22
,
317
326
.
15.
Insana
,
M. F.
, and
Brown
,
D. G.
(
1993
). “
Acoustic scattering theory applied to soft biological tissues
,” in
Ultrasonic Scattering in Biological Tissues
, edited by
K. K.
Shung
and
G. A.
Thieme
(
CRC Press
,
Boca Raton, FL
), pp.
75
124
.
16.
Insana
,
M. F.
,
Wagner
,
R. F.
,
Brown
,
D. G.
, and
Hall
,
T. J.
(
1990
). “
Describing small-scale structure in random media using pulse-echo ultrasound
,”
J. Acoust. Soc. Am.
87
,
179
192
.
17.
Kutay
,
M. A.
,
Petropulu
,
A. P.
, and
Piccoli
,
C. W.
(
2001
). “
On modeling biomedical ultrasound RF echoes using a power-law shot-noise model
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
48
,
953
968
.
18.
Kutay
,
M. A.
,
Petropulu
,
A. P.
, and
Piccoli
,
C. W.
(
2003
). “
Breast tissue characterization based on modeling of ultrasonic echoes using the power-law shot noise model
,”
Pattern Recogn. Lett.
24
,
741
756
.
19.
Landini
,
L.
, and
Verrazzani
,
L.
(
1990
). “
Spectral characterization of tissues microstructure by ultrasounds: A stochastic approach
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
37
,
448
456
.
20.
Laporte
,
C.
,
Clark
,
J. J.
, and
Arbel
,
T.
(
2009
). “
Generalized Poisson 3-D scatterer distributions
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
56
,
410
414
.
21.
Lizzi
,
F. L.
,
Greenebaum
,
M.
,
Feleppa
,
E. J.
,
Elbaum
,
M.
, and
Coleman
,
D. J.
(
1983
). “
Theoretical framework for spectrum analysis in ultrasonic tissue characterization
,”
J. Acoust. Soc. Am.
73
,
1366
1373
.
22.
Macovski
,
A.
(
1983
).
Basic Ultrasonic Imaging
(
Prentice-Hall
,
Englewood Cliffs, NJ
).
23.
Mamou
,
J.
, and
Oelze
,
M. L.
(
2013
).
Quantitative Ultrasound in Soft Tissues
(
Springer
Netherlands, Dordrecht
).
24.
Morse
,
P. M.
, and
Ingard
,
K. U.
(
1987
).
Theoretical Acoustics
(
Princeton University Press
,
Princeton, NJ
), Chap. 8.
25.
Papoulis
,
A.
(
1987
).
The Fourier Integral and its Applications
(
McGraw-Hill
,
New York
).
26.
Parker
,
K. J.
(
2016
). “
The H-scan format for classification of ultrasound scattering
,”
J. OMICS Radiol.
5
,
1000236
.
27.
Parker
,
K. J.
(
2019
). “
Shapes and distributions of soft tissue scatterers
,”
Phys. Med. Biol.
64
(
17
),
175022
.
28.
Parker
,
K. J.
,
Carroll-Nellenback
,
J. J.
, and
Wood
,
R. W.
(
2019
). “
The 3D spatial autocorrelation of the branching fractal vasculature
,”
Acoust.
1
,
369
381
.
29.
Poularikas
,
A. D.
(
2010
). “
Transforms and applications handbook, Chapter 6
,” in
The Electrical Engineering Handbook Series
(
CRC Press
,
Boca Raton, FL)
, p.
7.21
.
30.
Prince
,
J. L.
, and
Links
,
J. M.
(
2015
).
Medical Imaging Signals and Systems
(
Pearson
,
Boston, MA
).
31.
Rayleigh
,
L.
(
1897
). “
XXXVII. On the passage of waves through apertures in plane screens, and allied problems
,”
Philos. Mag.
43
,
259
272
.
32.
Rayleigh
,
L.
(
1918a
). “
On the scattering of light spherical shells, and by complete spheres of periodic structure, when the refractivity is small
,”
Proc. Royal Soc. London Series A
94
,
296
300
.
33.
Rayleigh
,
L.
(
1918b
). “
XLI. The dispersal of light by a dielectric cylinder
,”
London, Edinburgh, Dublin Philos. Mag. J. Sci.
36
,
365
376
.
34.
Rodriguez
,
R. N.
(
1977
). “
A guide to the Burr type XII distributions
,”
Biometrika
64
,
129
134
.
35.
Savery
,
D.
, and
Cloutier
,
G.
(
2001
). “
A point process approach to assess the frequency dependence of ultrasound backscattering by aggregating red blood cells
,”
J. Acoust. Soc. Am.
110
,
3252
3262
.
36.
Savery
,
D.
, and
Cloutier
,
G.
(
2005
). “
Effect of red cell clustering and anisotropy on ultrasound blood backscatter: A Monte Carlo study
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
52
,
94
103
.
37.
Shung
,
K. K.
, and
Thieme
,
G. A.
(
1993
).
Ultrasonic Scattering in Biological Tissues
(
CRC Press
,
Boca Raton, FL
).
38.
Sleefe
,
G. E.
, and
Lele
,
P. P.
(
1988
). “
Tissue characterization based on scatterer number density estimation
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
35
,
749
757
.
39.
Thijssen
,
J. M.
(
2003
). “
Ultrasonic speckle formation, analysis and processing applied to tissue characterization
,”
Pattern Recogn. Lett.
24
,
659
675
.
40.
Tuthill
,
T. A.
,
Sperry
,
R. H.
, and
Parker
,
K. J.
(
1988
). “
Deviations from Rayleigh statistics in ultrasonic speckle
,”
Ultrason. Imag.
10
,
81
89
.
41.
Waag
,
R. C.
,
Dalecki
,
D.
, and
Christopher
,
P. E.
(
1989a
). “
Spectral power determinations of compressibility and density variations in model media and calf liver using ultrasound
,”
J. Acoust. Soc. Am.
85
,
423
431
.
42.
Waag
,
R. C.
,
Dalecki
,
D.
, and
Smith
,
W. A.
(
1989b
). “
Estimates of wave front distortion from measurements of scattering by model random media and calf liver
,”
J. Acoust. Soc. Am.
85
,
406
415
.
43.
Waag
,
R. C.
,
Lee
,
P. P. K.
,
Persson
,
H. W.
,
Schenk
,
E. A.
, and
Gramiak
,
R.
(
1982
). “
Frequency-dependent angle scattering of ultrasound by liver
,”
J. Acoust. Soc. Am.
72
,
343
352
.
44.
Wear
,
K. A.
,
Wagner
,
R. F.
,
Brown
,
D. G.
, and
Insana
,
M. F.
(
1997
). “
Statistical properties of estimates of signal-to-noise ratio and number of scatterers per resolution cell
,”
J. Acoust. Soc. Am.
102
,
635
641
.
45.
Zagzebski
,
J. A.
,
Lu
,
Z. F.
, and
Yao
,
L. X.
(
1993
). “
Quantitative ultrasound imaging: In vivo results in normal liver
,”
Ultrason. Imag.
15
,
335
351
.
You do not currently have access to this content.