For decades, the phenomenon of subjectively enlarged octaves has been investigated using sinusoidal and synthesized complex tones. The present study elaborates the topic with samples of real orchestra instruments in successive tone listening experiments. Compared to previous research, this study also included a substantially larger number of subjects (N =36). Examined instrument tones were categorized into five groups based on their acoustic principles. In addition, each group was assessed at three dynamic levels (pp-mf-ff). Collected data were analyzed with tuning stretch curves by applying generalized additive models in the manner of the Railsback curve used to characterize piano tuning. Although the tuning curve modeled for the orchestra instruments was observed to differ slightly from the Railsback curve and typical Steinway D grand piano tuning (Steinway, New York), the stretching trends were qualitatively similar. Deviation from a mathematical equal-tempered scale was prominent. According to statistical analyses, dynamics or musical background of the participant did not affect results significantly, but some instrument groups exhibited differences in the curve extremities. In conclusion, the stretched scale is natural for a human listener and should be used as a reference scale in tuning machines instead of the mathematical equal-tempered scale.

1.
A.
Bachem
, “
Tone height and tone chroma as two different pitch qualities
,”
Acta Psycholog.
7
,
80
88
(
1950
).
2.
A.
Bachem
, “
Chroma fixation at the ends of the musical frequency scale
,”
J. Acoust. Soc. Am.
20
,
704
705
(
1948
).
3.
C.
Stumpf
and
M.
Meyer
, “
Maassbestimmungen über die Reinheit consonanter Intervalle (Measures concerning the purity of consonant intervals)
,”
Beiträge zur Akustik und Musikwissenschaft
2
,
84
167
(
1898
).
4.
W.
Ward
, “
Subjective musical pitch
,”
J. Acoust. Soc. Am.
26
(
3
),
369
380
(
1954
).
5.
K.
Walliser
, “
Über die Spreizung von empfundenen Intervallen gegenüber matematisch harmonischen Intervallen bei Sinustönen (On the spread of perceived intervals with respect to mathematic harmonic intervals in sinusoidal tones)
,”
Frequenz
23
,
139
143
(
1969
).
6.
E.
Terhardt
, “
Die Tonhöhe Harmonischer Klange und das Oktavintervall” (“The pitch of harmonic tones and the octave interval”)
,
Acustica
24
,
126
136
(
1971
).
7.
J. E.
Sundberg
and
J.
Lindqvist
, “
Musical octaves and pitch
,”
J. Acoust. Soc. Am.
54
(
0001-4966
),
922
929
(
1973
).
8.
W.
Hartmann
, “
On the origin of the enlarged melodic octave
,”
J. Acoust. Soc. Am.
93
(
6
),
3400
3409
(
1993
).
9.
P. A.
Dobbins
and
L. L.
Cuddy
, “
Octave discrimination: An experimental confirmation of the ‘stretched’ subjective octave
,”
J. Acoust. Soc. Am.
72
(
2
),
411
415
(
1982
).
10.
E.
Terhardt
and
M.
Zick
, “
Evaluation of the tempered tone scale in normal stretched and contracted intonation
,”
Acustica
32
,
268
274
(
1975
).
11.
G.
Van Den Brink
, “
Octave and fifth settings for pure tones and residue sounds
,” in
Psychophysics and Physiology of Hearing
, edited by
E.
Evans
and
J.
Wilson
(
Academic
,
London
,
1977
), pp.
373
379
.
12.
L.
Demany
and
C.
Semal
, “
Harmonic and melodic octave templates
,”
J. Acoust. Soc. Am.
88
(
5
),
2126
2135
(
1990
).
13.
B. S.
Rosner
, “
Stretching and compression in the perception of musical intervals
,”
Music Percept.
17
(
1
),
101
114
(
1999
).
14.
C.
von Maltzew
, “
Das Erkennen sukzessiv gegebener musikalischer Intervalle in den äusseren Tonregionen” (“The recognition of successively presented musical intervals in the outer regions of the musical scale”)
,
Z. Psychol.
64
,
161
257
(
1913
).
15.
O.
Railsback
, “
Scale temperament as applied to piano tuning
,”
J. Acoust. Soc. Am.
9
(
3
),
274
274
(
1938
).
16.
O.
Schuck
and
R.
Young
, “
Observations on the vibrations of piano strings
,”
J. Acoust. Soc. Am.
15
(
1
),
1
11
(
1943
).
17.
O.
Jorgensen
,
Tuning: Containing the Perfection of Eighteenth-Century Temperament, the Lost Art of Nineteenth-Century Temperament and the Science of Equal Temperament
(
Michigan State University Press
,
East Lansing, MI
,
1991
), pp.
739
745
.
18.
J.
Sundberg
,
The Science of Musical Sounds (Cognition and Perception)
(
Academic
,
San Diego
,
1991
), p.
274
.
19.
J. F.
Corso
, “
Scale Position and Performed Melodic Octaves
,”
J. Psychol.
37
(
2
),
297
305
(
1954
).
20.
F.
Fransson
,
J.
Sundberg
, and
P.
Tjernlund
, “
Statistical computer measurements of the tone-scale in played music
,”
STL-QPSR
2-3
,
41
45
(
1970
).
21.
A.
Rakowski
, “
Intonation variants of musical intervals in isolation and in musical contexts
,”
Psychol. Music
18
,
60
72
(
1990
).
22.
E.
Terhardt
, “
Stretch of the musical tone scale
,” available at https://www.ei.tum.de/fileadmin/tueifei/mmk/Personen/Terhardt/ter/top/scalestretch.html (Last viewed 20 October
2019
).
23.
J.
Schnupp
,
I.
Nelken
, and
A.
King
,
Auditory Neuroscience: Making Sense of Sound
(
The MIT Press
,
Cambridge, MA
,
2011
), p.
347
.
24.
G.
Langner
and
C.
Benson
,
The Neural Code of Pitch and Harmony
(
Cambridge University Press
,
Cornwall, UK
,
2015
).
25.
A. J.
Oxenham
, “
Pitch perception
,”
J. Neurosci.
32
(
39
),
13335
13338
(
2012
).
26.
E.
Terhardt
, “
Oktavspreizung und Tonhöhenverschiebung bei Sinustönen” (“Octave enlargement and pitch shift on sinusoidal tones”)
,
Acustica
22
,
345
351
(
1970
).
27.
K.
Ohgushi
, “
The origin of tonality and a possible explanation of the octave enlargement phenomenon
,”
J. Acoust. Soc. Am.
73
(
5
),
1694
1700
(
1983
).
28.
S.
Makeig
and
G.
Balzano
, “
Octave tuning. Two modes of perception
,” in
Fifth Annual Symposium on the Psychology and Acoustics of Music
(
1982
).
29.
M. F.
McKinney
and
B.
Delgutte
, “
A possible neurophysiological basis of the octave enlargement effect
,”
J. Acoust. Soc. Am.
106
(
5
),
2679
2692
(
1999
).
30.
A.
Bell
and
W. W.
Jedrzejczak
, “
The 1.06 frequency ratio in the cochlea: Evidence and outlook for a natural musical semitone
,”
PeerJ
5
,
e4192
(
2017
).
31.
A.
Appunn
, “
Appun reed tonometer
,” in The Collection of Historical Scientific Instruments of Harvard University, available at http://waywiser.fas.harvard.edu/objects/3435/appun-reed-tonometer;jsessionid=4AA975134B38AEC767A9ED2658A27ABD (Last viewed 20 October
2019
).
32.
E. M.
Cramer
and
W. H.
Huggins
, “
Creation of pitch through binaural interaction
,”
J. Acoust. Soc. Am.
30
(
5
),
413
417
(
1958
).
33.
S. N.
Wood
,
Generalized Additive Models: An Introduction with R
(
Chapman and Hall/CRC
,
Boca Raton, FL
,
2006
).
34.
C.
Semal
and
L.
Demany
, “
The upper limit of ‘musical’ pitch
,”
Music Percept.
8
(
2
),
165
176
(
1990
).
35.
D.
Pressnitzer
,
R. D.
Patterson
, and
K.
Krumbholz
, “
The lower limit of melodic pitch
,”
J. Acoust. Soc. Am.
109
(
5
),
2074
2084
(
2001
).
36.
S.
Adler
,
The Study of Orchestration
(
Norton
,
New York
,
2002
), p.
864
.
You do not currently have access to this content.