The modeling of source directivity is a problem of longstanding interest in virtual acoustics and auralisation. This remains the case for newer time domain volumetric wave-based approaches to simulation such as the finite difference time domain method. In this article, a spatio-temporal model of acoustic wave propagation, including a source term is presented. The source is modeled as a spatial Dirac delta function under the action of a series of differential operators associated with the spherical harmonic functions. Each term in the series gives rise to the directivity pattern of a given spherical harmonic, and is separately driven through a time domain filtering operation of an underlying source signal. Such a model is suitable for calibration against measured frequency-dependent directivity patterns and a procedure for arriving at time domain filters for each spherical harmonic channel is illustrated. It also yields a convenient framework for discretisation, and a simple strategy is presented, yielding a locally-defined operation over the spatial grid. Numerical results, illustrating various features of source directivity, including the comparison of measured and synthetic directivity patterns, are presented.

1.
D.
Poirer-Quinot
,
B.
Katz
, and
M.
Noisternig
, “
EVERTims: Open source framework for real-time auralization in architectural acoustics and virtual reality
,” in
Proceedings of the 20th International Conference on Digital Audio Effects
,
Edinburgh, UK
(September
2017
), pp.
323
328
.
2.
CLF Group
, “
Common loudspeaker format
,” http://www.clfgroup.org/ (Last viewed June 5,
2019
).
3.
L.
Savioja
and
U. P.
Svensson
, “
Overview of geometrical room acoustic modeling techniques
,”
J. Acoust. Soc. Am.
138
(
2
),
708
730
(
2015
).
4.
G.
Weinreich
and
E. B.
Arnold
, “
Method for measuring acoustic radiation fields
,”
J. Acoust. Soc. Am.
68
(
2
),
404
411
(
1980
).
5.
F.
Zotter
, “
Analysis and synthesis of sound-radiation with spherical arrays
,” Ph.D. thesis,
University of Music and Performing Arts
, Vienna, Austria,
2009
.
6.
D.
Malham
, “
Spherical harmonic coding of sound objects—The ambisonic ‘O’ format
,” in
19th International Conference of the A. E. S.
,
Schloss Elmau, Germany
(
2001
), Paper No. 1919.
7.
D.
Menzies
, “
W-panning and O-format, tools for object spatialization
,” in
Proceedings of the 22nd International Conference of the A. E. S.
,
Espoo, Finland
(
2002
), Paper No. 000225.
8.
A.
Wabnitz
,
N.
Epain
,
C.
Jin
, and
A.
van Schaik
, “
Room acoustics simulation for multichannel microphone arrays
,” in
Proceedings of the International Symposium on Room Acoustics
,
Melbourne, Australia
(August
2010
).
9.
D.
Schröder
, “
Physically based real-time auralization of interactive virtual environments
,” Ph.D. thesis,
Aachen University
, Aachen, Germany,
2011
.
10.
N. R.
Shabtai
,
G.
Behler
,
M.
Vorländer
, and
S.
Weinzierl
, “
Generation and analysis of an acoustic radiation pattern database for forty-one musical instruments
,”
J. Acoust. Soc. Am.
141
(
2
),
1246
1256
(
2017
).
11.
M.
Pollow
,
Directivity Patterns for Room Acoustical Measurements and Simulations
(
Logos Verlag Berlin GmbH
,
Berlin
,
2015
).
12.
P. N.
Samarasinghe
,
T. D.
Abhayapala
,
Y.
Lu
,
H.
Chen
, and
G.
Dickins
, “
Spherical harmonics based generalized image source method for simulating room acoustics
,”
J. Acoust. Soc. Am.
144
(
3
),
1381
1391
(
2018
).
13.
O.
Chiba
,
T.
Kashiwa
,
H.
Shimoda
,
S.
Kagami
, and
I.
Fukai
, “
Analysis of sound fields in three dimensional space by the time-dependent finite-difference method based on the leap frog algorithm
,”
J. Acoust. Soc. Jpn.
49
,
551
562
(
1993
).
14.
L.
Savioja
,
T.
Rinne
, and
T.
Takala
, “
Simulation of room acoustics with a 3-D finite-difference mesh
,” in
Proceedings of the International Computer Music Conference
,
Århus, Denmark
(
1994
), pp.
463
466
.
15.
D.
Botteldooren
, “
Acoustical finite-difference time-domain simulation in a quasi-cartesian grid
,”
J. Acoust. Soc. Am.
95
(
5
),
2313
2319
(
1994
).
16.
D.
Botteldooren
, “
Finite-difference time-domain simulation of low-frequency room acoustic problems
,”
J. Acoust. Soc. Am.
98
(
6
),
3302
3308
(
1995
).
17.
S.
Bilbao
, “
Modeling of complex geometries and boundary conditions in finite difference/finite volume time domain room acoustics simulation
,”
IEEE Trans. Audio Speech Language Process.
21
(
7
),
1524
1533
(
2013
).
18.
S.
Bilbao
,
B.
Hamilton
,
J.
Botts
, and
L.
Savioja
, “
Finite volume time domain room acoustics simulation under general impedance boundary conditions
,”
IEEE/ACM Trans. Audio Speech Language Process.
24
(
1
),
161
173
(
2016
).
19.
M.
Hornikx
,
W.
De Roeck
, and
W.
Desmet
, “
A multi-domain Fourier pseudospectral time-domain method for the linearized Euler equations
,”
J. Comp. Phys.
231
(
14
),
4759
4774
(
2012
).
20.
R.
Mehra
,
N.
Raghuvanshi
,
L.
Savioja
,
M.
Lin
, and
D.
Manocha
, “
An efficient GPU-based time domain solver for the acoustic wave equation
,”
Appl. Acoust.
73
(
2
),
83
94
(
2012
).
21.
D.
Murphy
,
A.
Kelloniemi
,
J.
Mullen
, and
S.
Shelley
, “
Acoustic modelling using the digital waveguide mesh
,”
IEEE Signal Process. Mag.
24
(
2
),
55
66
(
2007
).
22.
Y.
Yasuda
and
T.
Sakuma
, “
Boundary element method
,” in
Computational Simulation in Architectural and Environmental Acoustics
, edited by
T.
Sakuma
,
S.
Sakamoto
, and
T.
Otsuru
(
Springer
,
New York
,
2014
), p.
80
.
23.
A.
Celestinos
and
S.
Nielsen
, “
Low-frequency loudspeaker room simulation using finite differences in the time domain part 1: Analysis
,”
J. Audio Eng. Soc.
56
(
10
),
772
786
(
2008
).
24.
J.
Botts
,
A.
Bockman
, and
N.
Xiang
, “
On the selection and implementation of sources for finite-difference methods
,” in Proceedings of the 20th International Congress on Acoustics, Sydney, Australia (August
2010
).
25.
H.
Jeong
and
Y.
Lam
, “
Source implementation to eliminate low-frequency artifacts in finite difference time domain room acoustic simulation
,”
J. Acoust. Soc. Am.
258-268
(
1
),
1112
1118
(
2012
).
26.
A.
Southern
and
D.
Murphy
, “
Low complexity directional sound sources for finite difference time domain room acoustic models
,” in
Proceedings of the 126th Audio Engineering Society Convention
,
Munich, Germany
(
2009
).
27.
J.
Sheaffer
,
M.
van Walstijn
, and
B.
Fazenda
, “
Physical and numerical constraints in source modeling for finite difference simulation of room acoustics
,”
J. Acoust. Soc. Am.
135
(
1
),
251
(
2014
).
28.
D.
Murphy
,
A.
Southern
, and
L.
Savioja
, “
Source excitation strategies for obtaining impulse responses in finite difference time domain room acoustics simulation
,”
Appl. Acoust.
82
,
6
14
(
2014
).
29.
J.
Schneider
,
C.
Wagner
, and
S.
Broschat
, “
Implementation of transparent sources embedded in acoustic finite-difference time domain grids
,”
J. Acoust. Soc. Am.
136-142
(
1
),
3219
3226
(
1998
).
30.
J.
Escolano
,
J.
Lopez
, and
B.
Pueo
, “
Directive sources in acoustic discrete-time domain simulations based on directivity diagrams
,”
JASA Exp. Lett.
121
,
256
262
(
2007
).
31.
D.
Takeuchi
,
K.
Yatabe
, and
Y.
Oikawa
, “
Source directivity approximation for finite-difference time-domain simulation by estimating initial value
,”
J. Acoust. Soc. Am.
145
(
4
),
2638
2649
(
2019
).
32.
S.
Bilbao
and
B.
Hamilton
, “
Directional sources in wave-based acoustic simulation
,”
IEEE Trans. Audio Speech Lang. Process.
27
,
415
428
(
2019
).
33.
M.
Bencomo
and
W.
Symes
, “
Discretization of multipole sources in a finite difference setting for wave propagation problems
,”
J. Comp. Phys.
386
,
296
322
(
2019
).
34.
G.
Dickins
and
R.
Kennedy
, “
Towards optimal soundfield representation
,” in
Proceedings of the Audio Engineering Society Convention
,
Munich, Germany
, paper 4925 (
1999
).
35.
G.
Dickins
, “
Soundfield representation, reconstruction and perception
,” M.Sc. thesis,
Australian National University
,
Canberra, Australia
,
2003
.
36.
E.
Rowe
, “
Spherical delta functions and multipole expansions
,”
J. Math. Phys.
19
,
1962
1968
(
1978
).
37.
S.
Bilbao
,
A.
Politis
, and
B.
Hamilton
, “
Local time-domain spherical harmonic spatial encoding for wave-based acoustic simulation
,”
IEEE Signal Process. Lett.
26
(
4
),
617
621
(
2019
).
38.
R.
Mehra
,
L.
Antani
,
S.
Kim
, and
D.
Manocha
, “
Source and listener directivity for interactive wave-based sound propagation
,”
IEEE Trans. Visual. Comput. Graphics
20
(
4
),
495
503
(
2014
).
39.
N.
Gumerov
and
R.
Duraiswami
,
Fast Multipole Methods for the Helmholtz Equation in Three Dimensions
(
Elsevier
,
Amsterdam, The Netherlands
,
2004
).
40.
A.
Pierce
,
Acoustics: An Introduction to its Physical Principles and Applications
(
Acoustical Society of America
,
Melville, NY
,
1991
).
41.
J.
Ahrens
,
Analytic Methods of Sound Field Synthesis
(
Springer
,
Heidelberg, Germany
,
2012
), p.
30
.
42.
B.
Rafaely
,
Fundamentals of Spherical Array Processing
(
Springer
,
New York
,
2015
).
43.
P.
Cotterell
, “
On the theory of the second order soundfield microphone
,” Ph.D. thesis,
University of Reading
, Reading, UK,
2002
.
44.
N.
Hahn
and
S.
Spors
, “
Time domain representations of a plane wave with spatial band-limitation in the spherical harmonics domain
,” in
Proceedings of the Meeting of the German Acoustical Society (DAGA)
,
Rostock, Germany
(
2019
).
45.
J.
Meyer
,
Acoustics and the Performance of Music
(
Springer
,
New York
,
2009
), p.
130
.
46.
D. T.
Blackstock
,
Fundamentals of Physical Acoustics
(
Wiley-Interscience
,
New York
,
2000
), p.
495
.
47.
E.
Williams
,
Fourier Acoustics: Sound Radiation and Nearfield Acoustical Holography
(
Academic Press
,
New York
,
1999
).
48.
J.
Daniel
, “
Spatial sound encoding including near field effect: Introducing distance coding filters and a viable, new ambisonic format
,” in
Proceedings of the 23rd International Conference of the, A. E. S.
,
Espoo, Finland
(
2003
), Paper No. 16.
49.
H.
Pomberger
, “Angular and radial directivity control for spherical loudspeaker arrays
,” Diploma thesis,
University of Music and Dramatic Arts
, Graz, Austria,
2008
.
50.
K.
Atkinson
and
W.
Han
,
Spherical Harmonics and Approximations on the Unit Sphere: An Introduction
(
Springer
,
Heidelberg, Germany
,
2012
), p.
204
.
51.
J.
Ahrens
,
M. R. P.
Thomas
, and
I.
Tashev
, “
HRTF magnitude modeling using a non-regularized least-squares fit of spherical harmonics coefficients on incomplete data
,” in Proceedings of The 2012 Asia Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA), Hollywood, CA (
2012
), pp.
1
5
.
52.
S.
Boyd
and
L.
Vandenberghe
,
Convex Optimization
(
Cambridge University Press
,
Cambridge, UK
,
2004
), p.
649
.
53.
R.
Courant
,
K.
Friedrichs
, and
H.
Lewy
, “
On the partial differential equations of mathematical physics
,”
Math. Ann.
100
,
32
74
(
1928
).
54.
J.
Strikwerda
,
Finite Difference Schemes and Partial Differential Equations
(
Wadsworth and Brooks/Cole Advanced Books and Software
,
Pacific Grove, California
,
1989
).
55.
S.
Bilbao
and
B.
Hamilton
, “
Higher-order accurate two-step finite difference schemes for the many dimensional wave equation
,”
J. Comp. Phys.
367
,
134
165
(
2018
).
56.
Y.
Liu
and
Y.
Mori
, “
Properties of discrete delta functions and local convergence of the immersed boundary method
,”
SIAM J. Numer. Anal.
50
(
6
),
2986
3015
(
2012
).
57.
B.
Hosseini
,
N.
Nigam
, and
J.
Stockie
, “
On regularizations of the Dirac delta distribution
,”
J. Comp. Phys.
305
,
423
447
(
2016
).
58.
B.
Engquist
and
A.
Majda
, “
Absorbing boundary conditions for the numerical evaluation of waves
,”
Math. Comp.
31
(
139
),
629
651
(
1997
).
59.
N.
Meyer-Kahlen
,
F.
Zotter
, and
K.
Pollack
, “
Design and measurement of first-order, horizontally beam-controlling loudspeaker cube
,” in
Proceedings of the 144th Convention of the AES
,
Milan, Italy
(
2018
), e-Brief 447.
60.
F.
Zotter
, “
High-resolution directional impulse responses of the IEM loudspeaker cubes
,” https://phaidra.kug.ac.at/detail_object/o:70240 (Last viewed June 5,
2019
).
61.
J.
Hargreaves
,
L.
Rendell
, and
Y.
Lam
, “
A framework for auralization of boundary element method simulations including source and receiver directivity
,”
J. Acoust. Soc. Am.
145
(
4
),
2625
2637
(
2019
).
You do not currently have access to this content.