This study deals with sound radiation from a thin clamped annular plate. The fluid loading effect is included. Although it is a classical problem, using direct numerical integration to solve such a problem is usually troublesome and time consuming since the coupling integrals have certain singularities. Therefore, this study applies radial polynomials to improve the time efficiency of numerical calculations with no loss of accuracy. As radial polynomials are usually used for circular geometry, spectral mapping has been proposed to perform the necessary conversion from circular to annular geometry. The conversion is performed in the wavenumber domain. Spectral mapping makes it possible to efficiently obtain a number of numerical results for the acoustic power and acoustic field generated.

1.
M.-R.
Lee
and
R.
Singh
, “
Analytical formulations for annular disk sound radiation using structural modes
,”
J. Acoust. Soc. Am.
95
(
6
),
3311
3323
(
1994
).
2.
H.
Lee
and
R.
Singh
, “
Comparison of two analytical methods used to calculate sound radiation from radial vibration modes of a thick annular disk
,”
J. Sound Vib.
285
,
1210
1216
(
2005
).
3.
H.
Lee
and
R.
Singh
, “
Acoustic radiation from out-of-plane modes of an annular disk using thin and thick plate theories
,”
J. Sound Vib.
282
,
313
339
(
2005
).
4.
J.
Arenas
, “
Matrix method for estimating the sound power radiated from a vibrating plate for noise control engineering applications
,”
Latin Am. Appl. Res.
39
(
4
),
345
352
(
2009
).
5.
S.
Vishwakarma
,
A.
Pandey
,
J.
Parpia
,
D.
Southworth
,
H.
Craighead
, and
R.
Pratap
, “
Evaluation of mode dependent fluid damping in a high frequency drumhead microresonator
,”
J. Microelectromech. Syst.
23
(
2
),
334
346
(
2014
).
6.
S.
Hasheminejad
and
B.
Afsharmanesh
, “
Vibroacoustic response of an annular sandwich electrorheological disc
,”
J. Low Freq. Noise Vib. Active Control
33
(
3
),
371
394
(
2014
).
7.
Y.-H.
Huang
and
H.-Y.
Chiang
, “
Vibrational mode and sound radiation of electrostatic speakers using circular and annular diaphragms
,”
J. Sound Vib.
371
,
210
226
(
2016
).
8.
R.
Shakeri
and
D.
Younesian
, “
Broad-band noise mitigation in vibrating annular plates by dynamic absorbers
,”
Int. J. Struct. Stab. Dyn.
16
(
6
),
1550014
(
2016
).
9.
A.
Chatterjee
,
V.
Ranjan
, and
M.
Azam
, “
Mathematical modeling for estimation of acoustic radiation from clamped free tapered annular circular plate having different parabolically varying thickness
,”
Vibroengineering PROCEDIA
21
,
161
167
(
2018
).
10.
M.
Amabili
,
G.
Frosali
, and
M.
Kwak
, “
Free vibrations of annular plates coupled with fluids
,”
J. Sound Vib.
191
(
5
),
825
846
(
1996
).
11.
R.
Aarts
and
A.
Janssen
, “
Sound radiation quantities arising from a resilient circular radiator
,”
J. Acoust. Soc. Am.
126
(
4
),
1776
1787
(
2009
).
12.
W.
Rdzanek
, “
The acoustic power of a vibrating clamped circular plate revisited in the wide low frequency range using expansion into the radial polynomials
,”
J. Acoust. Soc. Am.
139
(
6
),
3199
3213
(
2016
).
13.
E.
Skudrzyk
,
The Foundations of Acoustics, Basic Mathematics and Basic Acoustics
(
Springer
,
New York
,
1971
),
790
pp.
14.
S.
Rao
,
Vibrations of Continuous Systems
(
Wiley India Pvt. Ltd.
,
Delhi
,
2007
),
720
pp.
15.
K.
Jun
and
H.
Eom
, “
Acoustic scattering from a circular aperture in a thick hard screen
,”
J. Acoust. Soc. Am.
98
(
4
),
2324
2327
(
1995
).
16.
L.
King
, “
On the acoustic radiation field of the piezo-electric oscillator and the effect of viscosity on transmission
,”
Can. J. Res.
11
(
2
),
135
155
(
1934
).
17.
A.
Sommerfeld
,
Partial Differential Equations in Physics
(
Academic
,
New York
,
1964
),
335
pp.
18.
M.
Abramowitz
and
I.
Stegun
(eds.),
Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables
(
U.S. Department of Commerce, National Bureau of Standards
,
Washington, DC
,
1972
),
1046
pp.
19.
W.
Rdzanek
, “
Sound scattering and transmission through a circular cylindrical aperture revisited using the radial polynomials
,”
J. Acoust. Soc. Am.
143
(
3
),
1259
1282
(
2018
).
20.
J.
Ginsberg
,
Acoustics—A Textbook for Engineers and Physicists
, Vol.
2
(
Springer
,
Cham, Switzerland
,
2018
),
698
pp.
21.
P.
Morse
and
K.
Ingard
,
Theoretical Acoustics
(
Princeton University Press
,
Princeton, NJ
,
1968
),
927
pp.
22.
H.
Kuttruff
,
Acoustics. An Introduction
(
Taylor and Francis
,
New York
,
2007
),
457
pp.
23.
W.
Rdzanek
, “
Sound radiation of a vibrating elastically supported circular plate embedded into a flat screen revisited using the Zernike circle polynomials
,”
J. Sound Vib.
434
,
92
125
(
2018
).
24.
E.
Skudrzyk
,
Simple and Complex Vibratory Systems
(
The Pennsylvania State University Press
,
University Park
,
1968
).
25.
W.
Thompson
, Jr.
, “
The computation of self- and mutual-radiation impedances for annular and elliptical pistons using Bouwkamp's integral
,”
J. Sound Vib.
17
(
2
),
221
233
(
1971
).
26.
E.
Chladni
,
Fourier Acoustics. Sound Radiation and Nearfield Acoustical Holography
(
Springer
,
Cham
,
2015
),
227
pp.
27.
A.
Greshilov
and
S.
Sukhinin
, “
Chladni figures of a circular plate floating in the bounded and unbounded water basins with the cantilevered central support
,”
J. Appl. Ind. Math.
11
(
1
),
49
57
(
2017
).
28.
G.
Vuillermet
,
P.-Y.
Gires
,
F.
Casset
, and
C.
Poulain
, “
Chladni patterns in a liquid at microscale
,”
Phys. Rev. Lett.
116
,
184501
(
2016
).
29.
H.
Trejo-Mandujano
,
G.
Mijares-Bernal
, and
E.
Ordonez-Casanova
, “
Alternate model of Chladni figures for the circular homogenous thin plate case with open boundaries
,”
J. Phys.: Conf. Ser.
582
(
1
),
012022
(
2015
).
30.
E.
Williams
,
Fourier Acoustics. Sound Radiation and Nearfield Acoustical Holography
(
Academic
,
London
,
1999
),
306
pp.
31.
N.
McLachlan
,
Bessel Functions for Engineers
(
Clarendon
,
Oxford
,
1955
),
239
pp.
32.
M.
Born
and
E.
Wolf
,
Principles of Optics: Electromagnetic Theory of Propagation, Interference, and Diffraction of Light
, 6th ed. (
Pergamon
,
New York
,
1989
),
808
pp.
33.
C.
Cerjan
, “
Bessel-Zernike discrete variable representation basis
,”
J. Phys. Chem. A
110
(
16
),
5495
5498
(
2006
).
34.
C.
Cerjan
, “
Zernike-Bessel representation and its application to Hankel transforms
,”
J. Opt. Soc. Am. A: Opt. Image Sci. Vision
24
(
6
),
1609
1616
(
2007
).
35.
D.
Jones
,
Acoustic and Electromagnetic Waves
(
Clarendon
,
Oxford
,
1986
),
745
pp.
36.
I.
Gradshteyn
and
I.
Ryzhik
,
Table of Integrals, Series, and Products
, 7th ed. (
Academic
,
New York
,
2007
),
1171
pp.
37.
N.
Lebedev
,
Special Functions and Their Applications
(
Prentice-Hall
,
London
,
1965
),
308
pp.
38.
See supplementary material at https://doi.org/10.1121/1.5130193 for the real component of the acoustic pressure Re{p(r,ϕ,z)exp(ikct)} as a function of time t (s), where is p presented in Eq. (25).

Supplementary Material

You do not currently have access to this content.