In the production of voiced speech, glottal flow skewing refers to the tilting of the glottal flow pulses to the right, often characterized as a delay of the peak, compared to the glottal area. In the past four decades, several studies have addressed this phenomenon using modeling of voice production with analog circuits and computer simulations. However, previous studies measuring flow skewing in natural production of speech are sparse and they contain little quantitative data about the degree of skewing between flow and area. In the current study, flow skewing was measured from the natural production of 40 vowel utterances produced by 10 speakers. Glottal flow was measured from speech using glottal inverse filtering and glottal area was captured with high-speed videoendoscopy. The estimated glottal flow and area waveforms were parameterized with four robust parameters that measure pulse skewness quantitatively. Statistical tests obtained for all four parameters showed that the flow pulse was significantly more skewed to the right than the area pulse. Hence, this study corroborates the existence of flow skewing using measurements from natural speech production. In addition, the study yields quantitative data about pulse skewness in simultaneous measured glottal flow and area in natural production of speech.

1.
Airaksinen
,
M.
,
Raitio
,
T.
,
Story
,
B.
, and
Alku
,
P.
(
2014
). “
Quasi closed phase glottal inverse filtering analysis with weighted linear prediction
,”
IEEE/ACM Trans. Audio Speech Lang. Process.
22
(
3
),
596
607
.
2.
Alku
,
P.
(
2011
). “
Glottal inverse filtering analysis of human voice production—A review of estimation and parameterization methods of the glottal excitation and their applications
,”
Sadhana
36
(
5
),
623
650
.
3.
Alku
,
P.
,
Bäckström
,
T.
, and
Vilkman
,
E.
(
2002
). “
Normalized amplitude quotient for parametrization of the glottal flow
,”
J. Acoust. Soc. Am.
112
(
2
),
701
710
.
4.
Alku
,
P.
,
Murtola
,
T.
,
Malinen
,
J.
,
Kuortti
,
J.
,
Story
,
B.
,
Airaksinen
,
M.
,
Salmi
,
M.
,
Vilkman
,
E.
, and
Geneid
,
A.
(
2019
). “
OPENGLOT—An open environment for the evaluation of glottal inverse filtering
,”
Speech Commun.
107
,
38
47
.
5.
Alku
,
P.
,
Pohjalainen
,
J.
,
Vainio
,
M.
,
Laukkanen
,
A.-M.
, and
Story
,
B. H.
(
2013
). “
Formant frequency estimation of high-pitched vowels using weighted linear prediction
,”
J. Acoust. Soc. Am.
134
(
2
),
1295
1313
.
6.
Ananthapadmanabha
,
T. V.
, and
Fant
,
G.
(
1982
). “
Calculation of true glottal flow and its components
,”
Speech Commun.
1
,
167
184
.
7.
Berouti
,
M.
,
Childers
,
D.
, and
Paige
,
A.
(
1977
). “
Glottal area versus glottal volume-velocity
,” in
IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
, Vol.
2
, pp.
33
36
.
8.
Chen
,
G.
,
Kreiman
,
J.
,
Gerratt
,
B. R.
,
Neubauer
,
J.
,
Shue
,
Y.-L.
, and
Alwan
,
A.
(
2013
). “
Development of a glottal area index that integrates glottal gap size and open quotient
,”
J. Acoust. Soc. Am.
133
(
3
),
1656
1666
.
9.
Childers
,
D. G.
,
Naik
,
J. M.
,
Larar
,
J. N.
,
Krishnamurthy
,
A. K.
, and
Moore
,
G. P.
(
1985
). “
Electroglottography, speech, and ultra-high speed cinematography
,” in
Vocal Fold Physiology
, edited by
I. R.
Titze
and
R. C.
Scherer
(
The Dencer Center For The Performing Arts
,
Denver, CO
), pp.
202
220
.
10.
Dromey
,
C.
,
Stathopoulos
,
E. T.
, and
Sapienza
,
C. M.
(
1992
). “
Glottal airflow and electroglottographic measures of vocal function at multiple intensities
,”
J. Voice
6
(
1
),
44
54
.
11.
Granqvist
,
S.
,
Hertegård
,
S.
,
Larsson
,
H.
, and
Sundberg
,
J.
(
2003
). “
Simultaneous analysis of vocal fold vibration and transglottal airflow: Exploring a new experimental setup
,”
J. Voice
17
(
3
),
319
330
.
12.
Koizumi
,
T.
,
Taniguchi
,
S.
, and
Hiromitsu
,
S.
(
1985
). “
Glottal source-vocal tract interaction
,”
J. Acoust. Soc. Am.
78
(
5
),
1541
1547
.
13.
Krishnamurthy
,
A.
, and
Childers
,
D.
(
1981
). “
Vocal fold vibratory patterns: Comparison of film and inverse filtering
,” in
IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
, Vol.
6
, pp.
133
136
.
14.
Lohscheller
,
J.
,
Toy
,
H.
,
Rosanowski
,
F.
,
Eysholdt
,
U.
, and
Döllinger
,
M.
(
2007
). “
Clinically evaluated procedure for the reconstruction of vocal fold vibrations from endoscopic digital high-speed videos
,”
Med. Image Anal.
11
(
4
),
400
413
.
15.
Ma
,
C.
,
Kamp
,
Y.
, and
Willems
,
L.
(
1993
). “
Robust signal selection for linear prediction analysis of voiced speech
,”
Speech Commun.
12
(
1
),
69
81
.
16.
Mehta
,
D. D.
,
Zañartu
,
M.
,
Quatieri
,
T. F.
,
Deliyski
,
D. D.
, and
Hillman
,
R. E.
(
2011
). “
Investigating acoustic correlates of human vocal fold vibratory phase asymmetry through modeling and laryngeal high-speed videoendoscopy
,”
J. Acoust. Soc. Am.
130
(
6
),
3999
4009
.
17.
Monsen
,
R. B.
, and
Engebretson
,
A. M.
(
1977
). “
Study of variations in the male and female glottal wave
,”
J. Acoust. Soc. Am.
62
(
4
),
981
993
.
18.
Oppenheim
,
A. V.
, and
Schafer
,
R. W.
(
1989
).
Discrete-Time Signal Processing
(
Prentice-Hall
,
Englewood Cliffs, NJ
).
19.
Rothenberg
,
M.
(
1981a
). “
Acoustic interaction between the glottal source and the vocal tract
,” in
Vocal Fold Physiology
, edited by
K. N.
Stevens
and
M.
Hirano
(
University of Tokyo Press
,
Japan
), Chap. 21, pp.
305
328
.
20.
Rothenberg
,
M.
(
1981b
). “
Source-tract acoustic interaction in breathy voice
,” in
Vocal Fold Physiology: Biomechanics, Acoustics and Phonatory Control
, edited by
I. R.
Titze
and
R. C.
Scherer
(
The Denver Center for the Performing Arts
,
Denver, CO
), Chap. 37, pp.
465
481
.
21.
Sapienza
,
C. M.
,
Stathopoulos
,
E. T.
, and
Dromey
,
C.
(
1998
). “
Approximations of open quotient and speed quotient from glottal airflow and EGG waveforms: Effects of measurement criteria and sound pressure level
,”
J. Voice
12
(
1
),
31
43
.
22.
Smith
,
B. L.
,
Nemcek
,
S. P.
,
Swinarski
,
K. A.
, and
Jiang
,
J. J.
(
2013
). “
Nonlinear source-filter coupling due to the addition of a simplified vocal tract model for excised larynx experiments
,”
J. Voice
27
(
3
),
261
266
.
23.
Titze
,
I. R.
(
2004
). “
Theory of glottal airflow and source-filter interaction in speaking and singing
,”
Acta Acust. Acust.
90
(
4
),
641
648
.
24.
Titze
,
I. R.
(
2008
). “
Nonlinear source-filter coupling in phonation: Theory
,”
J. Acoust. Soc. Am.
123
(
5
),
2733
2749
.
25.
Titze
,
I. R.
, and
Palaparthi
,
A.
(
2016
). “
Sensitivity of source–filter interaction to specific vocal tract shapes
,”
IEEE/ACM Trans. Audio Speech Lang. Process.
24
(
12
),
2507
2515
.
26.
Titze
,
I. R.
,
Riede
,
T.
, and
Popolo
,
P.
(
2008
). “
Nonlinear source-filter coupling in phonation: Vocal exercises
,”
J. Acoust. Soc. Am.
123
(
4
),
1902
1915
.
27.
Titze
,
I. R.
, and
Story
,
B. H.
(
1997
). “
Acoustic interactions of the voice source with the lower vocal tract
,”
J. Acoust. Soc. Am.
101
(
4
),
2234
2243
.
28.
Zañartu
,
M.
,
Mehta
,
D. D.
,
Ho
,
J. C.
,
Wodicka
,
G. R.
, and
Hillman
,
R. E.
(
2011
). “
Observation and analysis of in vivo vocal fold tissue instabilities produced by nonlinear source-filter coupling: A case study
,”
J. Acoust. Soc. Am.
129
(
1
),
326
339
.
29.
Zañartu
,
M.
,
Mongeau
,
L.
, and
Wodicka
,
G. R.
(
2007
). “
Influence of acoustic loading on an effective single mass model of the vocal folds
,”
J. Acoust. Soc. Am.
121
(
2
),
1119
1129
.
You do not currently have access to this content.