Acoustic backscatter measurements were conducted on a stationary harbor porpoise (Phocoena phocoena) under controlled conditions. The measurements were made with the porpoise in the broadside aspect using three different types of signals: (1) a 475 μs linear frequency-modulated (FM) pulse with a frequency range from 23 to 160 kHz; (2) a simulated bottlenose dolphin (Tursiops “truncates”) click with a peak frequency of 120 kHz; and (3) a simulated killer whale (Orcinus orca) click with a peak frequency of 60 kHz. The measurement with the FM pulse indicated that the mean target strength at the broadside aspect decreased from −26 to −50 dB as the frequency increased from 23 to 120 kHz in a nearly linear fashion (on a logarithm plot). Target strength variation with frequency was similar to a previous backscatter measurement on a bottlenose dolphin over a comparable frequency range (23–80 kHz). The porpoise seems to be a stealth body with low backscatter properties. The target strength of the porpoise was also about 15−16 dB lower than that of the bottlenose dolphin. The difference in lung volume of the two species when expressed in dB was also approximately 15 dB.

You do not currently have access to this content.