The bubble curtain is one of the most used measures to reduce underwater pile driving noise. A model of the local distribution of the effective wavenumber was developed. The bubble size distribution was derived from tank measurements. The local distribution of the air fraction was determined by means of an integral method. In a preliminary step, the transfer characteristics of a bubble curtain were studied. The results show a decrease of the transmission coefficient for higher frequencies and additionally for lower water depths. For lower frequencies, λ/2-transmission can be observed. Examining the noise mitigation of a bubble curtain under offshore conditions, a model of the acoustical scenario was developed. Two different offshore measurement sites are described in detail and compared to the modeling results. The distance between bubble curtain and the pile was identified as an important parameter affecting the noise mitigation. The presented approach shows an appropriate representation of the noise mitigation and allows, due to its generic definition, for future investigations of various aspects, e.g., the influence of the soil or the effect of an extra pile near system on the noise mitigation.

1.
Ainslie
,
M.
,
Dahl
,
P.
,
Jong
,
C.
, and
Laws
,
R.
(
2014
). “
Practical spreading laws: The snakes and ladders of shallow water acoustics
,” in
Proceedings 2nd International Conference and Exhibition on Underwater Acoustics
, Rhodes, Greece, pp.
879
886
.
2.
Bellmann
,
M. A.
,
Guendert
,
S.
, and
Remmers
,
P.
(
2015
). “
Offshore Messkampagne 2 (OMK 2) für das Projekt BORA im Offshore-Windpark Global Tech I
” [“Offshore measurement campaign 2 (OMK 2) for the BORA project in the offshore wind farm Global Tech I”], technical report, https://www.tuhh.de/bora/home/publications.html (Last viewed 9/20/2019).
3.
Brevik
,
I.
, and
Kluge
,
R.
(
1999
). “
On the role of turbulence in the phenomenological theory of plane and axisymmetric air-bubble plumes
,”
Int. J. Multiphase Flow
25
(
1
),
87
108
.
4.
Cheremisinoff
,
N. P.
(
1986
).
Encyclopedia of Fluid Mechanics. 3: Gas-Liquid Flows
(
Gulf
,
Houston
), oCLC: 247303562, Chap. 4, pp.
59
63
.
5.
Commander
,
K. W.
, and
Prosperetti
,
A.
(
1989
). “
Linear pressure waves in bubbly liquids: Comparison between theory and experiments
,”
J. Acoust. Soc. Am.
85
,
732
746
.
6.
Ditmars
,
J. D.
, and
Cederwall
,
K.
(
1974
). “
Analysis of air-bubble plumes
,” in
Coastal Engineering
(
American Society of Civil Engineers
,
Copenhagen, Denmark
), pp.
2209
2226
.
7.
Elmer
,
K.-H.
,
Betke
,
K.
, and
Neumann
,
T.
(
2007
). “
Standardverfahren zur Ermittlung und Bewertung der Belastung der Meeresumwelt durch die Schallimmission von Offshore-Windenergieanlagen
” (“Standard procedures for determining and assessing the impact of noise emissions from offshore wind turbines on the marine environment”), technical report.
8.
Foldy
,
L. L.
(
1945
). “
The multiple scattering of waves. I. General theory of isotropic scattering by randomly distributed scatterers
,”
Phys. Rev.
67
(
3-4
),
107
119
.
9.
Fox
,
Francis E.
,
Curley
,
Stanley R.
, and
Larson
,
Glenn S.
(
1955
). “
Phase velocity and absorption measurements in water containing air bubbles
,”
J. Acoust. Soc. Am.
27
,
534
539
.
10.
Fricke
,
M. B.
, and
Rolfes
,
R.
(
2015
). “
Towards a complete physically based forecast model for underwater noise related to impact pile driving
,”
J. Acoust. Soc. Am.
137
(
3
),
1564
1575
.
11.
Gattermann
,
J.
,
Stahlmann
,
J.
, and
Zahlmann
,
J.
(
2009
). “
Rammbegleitende Messungen am Monopile von FINO3: Der Einsatz von GEMSOGS im Offshore Bau
” (“Measurements at the monopile of FINO3 during ramming: The use of GEMSOGS in offshore construction”), in
3.VDI-Fachtagung Baudynamik Kassel, 14. und 15. Mai
(
Kassel
,
Germany
), pp.
443
454
.
12.
Göttsche
,
K. M.
,
Juhl
,
P. M.
, and
Steinhagen
,
U.
(
2013
). “
Numerical prediction of underwater noise reduction during offshore pile driving by a small bubble curtain
,” in
Proceedings of the International Congress and Exposition on Noise Control Engineering (INTER-NOISE)
, Innsbruck, Austria, https://docs.wind-watch.org/Gottsche-Internoise-2013.pdf (Last viewed 9/20/2019).
13.
Grießmann
,
T.
,
Rustemeier
,
J.
,
Rolfes
,
R.
,
Betke
,
K.
,
Gabriel
,
J.
,
Neumann
,
T.
,
Nehls
,
G.
,
Brandt
,
M.
,
Diederichs
,
A.
, and
Bachmann
,
J.
(
2009
). “
Erforschung und Anwendung von Schallminimierungsmaßnahmen beim Rammen des FINO3 Monopiles (Schall FINO3)
” [“Investigation and application of noise mitigation systems during driving of the FINO3 monopile (Schall FINO3)”], technical report, https://www.isd.uni-hannover.de/fileadmin/institut/Forschungsberichte/FKZ0325023A-SchallFINO3.pdf (Last viewed 9/20/19).
14.
Hun-wei Lee
,
J.
, and
Chu
,
V.
(
2012
).
Turbulent Jets and Plumes: A Lagrangian Approach
(
Springer
,
Boston
), Chap. 1.4, pp.
33
34
.
15.
International Organization for Standardization
(
1997
). ISO 10847:1997, “
Acoustics—In-situ determination of insertion loss of outdoor noise barriers of all types
” (International Organization for Standardization, Geneva, Switzerland).
16.
International Organization for Standardization
(
2003
). ISO 1996-1 (2003-08), “
Acoustics—Description, measurement and assessment of environmental noise. Part 1: Basic quantities and assessment procedure
” (International Organization for Standardization, Geneva, Switzerland).
17.
International Organization for Standardization
(
2017
). ISO 18405:2017, “
Underwater acoustics
Terminology
” (International Organization for Standardization, Geneva, Switzerland).
18.
Knust
,
R.
,
Dahlhoff
,
P.
,
Gabriel
,
J.
,
Heuers
,
J.
,
Hüppop
,
O.
, and
Wendeln
,
H.
(
2003
). “
Investigations to avoid and reduce possible impacts of wind energy parks on the marine environment in the offshore areas of North and Baltic Sea
,” https://www.umweltbundesamt.de/sites/default/files/medien/publikation/long/2686.pdf (Last viewed 9/20/2019).
19.
Kobus
,
H.
(
1976
). “
Air bubble screens as a tool for water quality control
,” doi:.
20.
Kobus
,
H. E.
(
1968
). “
Analysis of the flow induced by air-bubble systems
,” Coastal Engineering Proceedings (11), https://icce-ojs-tamu.tdl.org/icce/index.php/icce/article/view/2568 (Last viewed 9/20/2019).
21.
Leibson
,
I.
,
Holcomb
,
E. G.
,
Cacoso
,
A. G.
, and
Jacmic
,
J. J.
(
1956
). “
Rate of flow and mechanics of bubble formation from single submerged orifices. II. Mechanics of bubble formation
,”
AIChE J.
2
(
3
),
300
306
.
22.
Leighton
,
T. G.
(
1994
).
The Acoustic Bubble
(
Academic Press
,
London
), Chap. 4.
23.
Lippert
,
S.
,
Huisman
,
M.
, and
Ruhnau
,
M.
(
2017
). “
Prognosis of underwater pile driving noise for submerged skirt piles of jacket structures
,” in
UACE2015-3rd Underwater Acoustics Conference and Exhibition
, Greece, p.
8
.
24.
Milgram
,
J. H.
(
1983
). “
Mean flow in round bubble plumes
,”
J. Fluid Mech.
133
(
1
),
345
376
.
25.
Minnaert
,
M.
(
1933
). “
XVI. On musical air-bubbles and the sounds of running water
,”
London Edinburgh Dublin Philos. Mag. J. Sci.
16
(
104
),
235
248
.
26.
Müller
,
A.
, and
Zerbs
,
C.
(
2011
). “
Measuring instruction for underwater sound monitoring
,” https://www.bsh.de/DE/PUBLIKATIONEN/_Anlagen/Downloads_Suchausschluss/Offshore/Anlagen-EN/Measuring-instruction-for-underwater-sound-monitoring.html#download=1 (Last viewed 9/20/2019).
27.
Müller
,
A.
, and
Zerbs
,
C.
(
2013
). “
Measuring specification for the quantitative determination of the effectiveness of noise control systems
,” https://www.bsh.de/DE/PUBLIKATIONEN/_Anlagen/Downloads_Suchausschluss/Offshore/Anlagen-EN/Measuring-specifications-quantitative-dDetermination-noise-control-systems.html#download=1 (Last viewed 9/20/2019).
28.
Novarini
,
J.
,
Keiffer
,
R.
, and
Norton
,
G.
(
1998
). “
A model for variations in the range and depth dependence of the sound speed and attenuation induced by bubble clouds under wind-driven sea surfaces
,”
IEEE J. Ocean. Eng.
23
(
4
),
423
438
.
29.
Reinhall
,
P. G.
, and
Dahl
,
P. H.
(
2011
). “
Underwater Mach wave radiation from impact pile driving: Theory and observation
,”
J. Acoust. Soc. Am.
130
(
3
),
1209
1216
.
30.
Rossing
,
T. D.
(
2014
).
Springer Handbook of Acoustics
(
Springer
,
New York
), Chap. 3.5.3, p.
46
and Chap. 11.1.6, p. 398.
31.
Rustemeier
,
J.
(
2016
). “
Optimierung von Blasenschleiern zur Minderung von Unterwasser-Rammschall” (“Optimization of bubble curtains to reduce underwater pile-driving noise”)
, Ph.D. thesis,
Institut für Statik und Dynamik
, Hannover, Germany.
32.
Rustemeier
,
J.
,
Neuber
,
M.
,
Griessmann
,
T.
,
Rolfes
,
R.
,
Ewaldt
,
A.
,
Uhl
,
A.
,
Glahn
,
M. S.-v.
,
Betke
,
K.
,
Matuschek
,
R.
, and
Lübben
,
A.
(
2012
). “
Konzeption, Erprobung, Realisierung und Überprüfung von lärmarmen Bauverfahren und Lärmminderungsmassnahmen bei der Gründung von Offshore-WEA (Schall3)
” [“Design, testing, implementation and verification of low-noise construction methods and noise reduction measures for the foundation of offshore wind turbines (Schall3)”], technical report, https://www.isd.uni-hannover.de/223.html (Last viewed 9/20/19).
33.
Slauenwhite
,
D. E.
, and
Johnson
,
B. D.
(
1999
). “
Bubble shattering: Differences in bubble formation in fresh water and seawater
,”
J. Geophys. Res.: Oceans
104
(
C2
),
3265
3275
, .
34.
Sokolichin
,
A.
,
Eigenberger
,
G.
, and
Lapin
,
A.
(
2004
). “
Simulation of buoyancy driven bubbly flow: Established simplifications and open questions
,”
AIChE J.
50
(
1
),
24
45
.
35.
Tsouvalas
,
A.
, and
Metrikine
,
A.
(
2016
). “
Noise reduction by the application of an air-bubble curtain in offshore pile driving
,”
J. Sound Vib.
371
,
150
170
.
36.
U.S. National Marine Fisheries Service
, Office Of Protected Resources (
2016
). “
Technical guidance for assessing the effects of anthropogenic sound on marine mammal hearing: Underwater acoustic thresholds for onset of permanent and temporary threshold shifts
,” U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Office of Protected Resources, https://repository.library.noaa.gov/view/noaa/15850 (Last viewed 9/20/2019).
37.
VDI and VDI-GVC
(
2013
).
VDI-Wärmeatlas (VDI Heat Atlas)
, 11. ed., Springer Reference (
Springer Vieweg
,
Berlin
), Chap. L4, pp.
1413
1426
.
38.
von Estorff
,
O.
,
Grabe
,
J.
,
Rolfes
,
R.
,
Lippert
,
S.
, and
Rabbel
,
W.
(
2015
). “
Final report of the joint research project BORA: Development of a computational model for the prediction of underwater noise due to pile driving for offshore wind turbine foundations,” technical report
, https://www.tib.eu/suchen/id/TIBKAT:87145873X/.
39.
Würsig
,
B.
,
Greene
,
C.
, and
Jefferson
,
T.
(
2000
). “
Development of an air bubble curtain to reduce underwater noise of percussive piling
,”
Marine Environmental Research
49
(
1
),
79
93
, http://linkinghub.elsevier.com/retrieve/pii/S0141113699000501 (Last viewed 9/20/2019).
40.
Zampolli
,
M.
,
Nijhof
,
M. J. J.
,
de Jong
,
C. A. F.
,
Ainslie
,
M. A.
,
Jansen
,
E. H. W.
, and
Quesson
,
B. A. J.
(
2013
). “
Validation of finite element computations for the quantitative prediction of underwater noise from impact pile driving
,”
J. Acoust. Soc. Am.
133
(
1
),
72
81
.
You do not currently have access to this content.