A previous paper by the author has shown that transient structural-acoustic problems can be solved using time stepping procedures with the structure and fluid modeled using finite elements and equivalent sources, respectively. Here, the analysis is extended to included scattering problems. Although scattering problems have been discussed extensively in the literature, the current formulation is unique because the acoustic coupling matrix is treated as sparse. Also, most of the previous analyses have assumed the problem is time harmonic, and there is an advantage to performing the computations in the time domain because only a limited number of time steps are required to obtain wideband frequency resolution. This is especially true if the main emphasis is on the mid- to high-frequencies since the ringing response is typically dominated by the lowest frequency modes. Several examples are solved to validate the computations and to document the computation times and solution accuracy.

1.
J. B.
Fahnline
, “
Solving transient acoustic boundary value problems with equivalent sources using a lumped parameter approach
,”
J. Acoust. Soc. Am.
140
(
6
),
4115
4129
(
2016
).
2.
J. B.
Fahnline
and
M. R.
Shepherd
, “
Transient finite element/equivalent sources using direct coupling and treating the acoustic coupling matrix as sparse
,”
J. Acoust. Soc. Am.
142
(
2
),
1011
1024
(
2017
).
3.
M.
Zampolli
,
A.
Tesei
,
F. B.
Jensen
,
N.
Malm
, and
J. B.
Blottman
 III
, “
A computationally efficient finite element model with perfectly matched layers applied to scattering from axially symmetric objects
,”
J. Acoust. Soc. Am.
122
(
3
),
1472
1485
(
2007
).
4.
M.
Zampolli
,
F. B.
Jensen
, and
A.
Tesei
, “
Benchmark problems for acoustic scattering from elastic objects in the free field and near the seafloor
,”
J. Acoust. Soc. Am.
125
(
1
),
89
98
(
2009
).
5.
A. J.
Burton
and
G. F.
Miller
, “
The application of integral equation methods to the numerical solution of some exterior boundary-value problems
,”
Proc. Roy. Soc. Lond.
323
,
201
210
(
1971
).
6.
H. A.
Schenck
, “
Improved integral formulation for acoustic radiation problems
,”
J. Acoust. Soc. Am.
44
(
1
),
41
58
(
1968
).
7.
A. L.
España
,
K. L.
Williams
,
D. S.
Plotnick
, and
P. L.
Marston
, “
Acoustic scattering from a water-filled cylindrical shell: Measurements, modeling, and interpretation
,”
J. Acoust. Soc. Am.
136
(
1
),
109
121
(
2014
).
8.
S.
Dey
,
A.
Sarkissian
,
H.
Simpson
,
B. H.
Houston
,
F. A.
Bulat
,
L.
Kraus
,
M.
Saniga
, and
J. A.
Bucaro
, “
Structural-acoustic modeling for three-dimensional freefield and littoral environments with verification and validation
,”
J. Acoust. Soc. Am.
129
(
5
),
2979
2990
(
2011
).
9.
K. L.
Williams
,
S. G.
Kargl
,
E. I.
Thorsos
,
D. S.
Burnett
,
J. L.
Lopes
,
M.
Zampolli
, and
P. L.
Marston
, “
Acoustic scattering from a solid aluminum cylinder in contact with a sand sediment: Measurements, modeling, and interpretation
,”
J. Acoust. Soc. Am.
127
(
6
),
3356
3371
(
2010
).
10.
D. S.
Burnett
, “
Computer simulation for predicting acoustic scattering from objects at the bottom of the ocean
,”
Acoust. Today
11
,
28
36
(
2015
).
11.
D. S.
Burnett
, “
A three-dimensional acoustic infinite element based on a prolate spheroidal multipole expansion
,”
J. Acoust. Soc. Am.
96
(
5
),
2798
2816
(
1994
).
12.
G. A.
Lesieutre
and
U.
Lee
, “
A finite element for beams having segmented active constrained layers with frequency-dependent viscoelastics
,”
Smart Mater. Struct.
5
,
615
627
(
1996
).
13.
Y.
Shao
and
S.
Wang
, “
A Fourier-based total-field/scattered-field technique for three-dimensional broadband simulations of elastic targets near a water-sand interface
,”
J. Acoust. Soc. Am.
140
(
6
),
4183
4192
(
2016
).
14.
P. R.
Amestoy
,
I. S.
Duff
,
J.-Y.
L'Excellent
, and
J.
Koster
, “
A fully asynchronous multifrontal solver using distributed dynamic scheduling
,”
SIAM J. Matrix Anal. Appl.
23
(
1
),
15
41
(
2001
).
15.
R. D.
Falgout
,
J. E.
Jones
, and
U. M.
Yang
, “
The design and implementation of hypre, a library of parallel high performance preconditioners
,” in
Numerical Solution of Partial Differential Equations on Parallel Computers
(
Springer
,
Berlin
,
2006
). pp.
267
294
.
16.
K.
Blakely
,
MSC/NASTRAN Basic Dynamic Analysis: User's Guide, Version 68
(
MacNeal-Schwendler
,
Newport Beach, CA
,
1993
) pp.
154
155
.
17.
P. R
Stepanishen
and
E. D.
Ebenezer
, “
An in vacuo modal expansion method to determine the transient response of fluid-loaded planar vibrators
,”
J. Sound Vib.
153
(
3
),
453
472
(
1992
).
18.
P. R
Stepanishen
, “
Acoustic transient radiation and scattering from fluid-loaded elastic shells using convolution methods
,”
J. Acoust. Soc. Am.
102
(
1
),
110
119
(
1997
).
19.
R.
MacNeal
, “
The NASTRAN theoretical manual,” Report No. NASA-SP-221(06)
, NASA, Washington, DC,
1981
.
20.
B.
Yue
and
M. N.
Guddati
, “
Dispersion reducing finite elements for transient acoustics
,”
J. Acoust. Soc. Am.
118
(
4
),
2132
2141
(
2005
).
21.
G. C.
Gaunaurd
and
C. Y.
Tsui
, “
Transient and steady-state target-resonance excitation by sound scattering
,”
Appl. Acoust.
23
(
2
),
121
140
(
1988
).
22.
G. C.
Gaunaurd
, “
Active acoustic classification via transient resonance scattering
,”
Opt. Eng.
31
(
12
),
2553
2561
(
1992
).
23.
W. K.
Bonness
,
J. B.
Fahnline
, and
D. M
Jenkins
, “
Circumferential wavenumber decomposition of experimental data from structures containing circular symmetry
,” in
Proceedings of the International Modal Analysis Conference IMAC-XXI
, 3–6 February 2003, Kissimmee, FL (Society for Experimental Mechanics, Bethel, CT,
2003
), Paper No. 184.
24.
S.
Koric
,
Q.
Lu
, and
E.
Guleryuz
, “
Evaluation of massively parallel linear sparse solvers on unstructured finite element meshes
,”
Comput. Struct.
141
,
19
25
(
2014
).
25.
Y.
Saad
,
Iterative Methods for Sparse Linear Systems
(
SIAM
,
Philadelphia, PA
,
2003
).
26.
E. G.
Granados
, “
Computation of the impulse response of small rooms with the time domain boundary element method
,” Master's thesis,
Institut für Strömungsmechanik und Technische Akustik
, Berlin,
2011
.
27.
J. B.
Fahnline
, “
Applying time domain equivalent sources to the computation of head related impulse responses and transfer functions
,”
Proc. Mtgs. Acoust.
30
,
065004
(
2017
).
You do not currently have access to this content.