A fully explicit marching-on-in-time (MOT) scheme for solving the time domain Kirchhoff (surface) integral equation to analyze transient acoustic scattering from rigid objects is presented. A higher-order Nyström method and a PE(CE)m-type ordinary differential equation integrator are used for spatial discretization and time marching, respectively. The resulting MOT scheme uses the same time step size as its implicit counterpart (which also uses Nyström method in space) without sacrificing from the accuracy and stability of the solution. Numerical results demonstrate the accuracy, efficiency, and applicability of the proposed explicit MOT solver.
References
1.
S.
Wang
, “Finite-difference time-domain approach to underwater acoustic scattering problems
,” J. Acoust. Soc. Am.
99
(4
), 1924
–1931
(1996
).2.
K.
Manoj
and S.
Bhattacharyya
, “Transient acoustic radiation from impulsively accelerated bodies by the finite element method
,” J. Acoust. Soc. Am.
107
(3
), 1179
–1188
(2000
).3.
J.-M.
Jin
, The Finite Element Method in Electromagnetics
(Wiley-IEEE
, Hoboken, NJ
, 2014
).4.
J.-M.
Jin
, Theory and Computation of Electromagnetic Fields
(Wiley-IEEE
, Hoboken, NJ
, 2015
).5.
M. J.
Bluck
and S. P.
Walker
, “Analysis of three-dimensional transient acoustic wave propagation using the boundary integral equation method
,” Int. J. Numer. Methods Eng.
39
(8
), 1419
–1431
(1996
).6.
S.
Dodson
, S.
Walker
, and M.
Bluck
, “Implicitness and stability of time domain integral equation scattering analyses
,” Appl. Comput. Electromagn. Soc. J.
13
, 291
–301
(1998
).7.
M.
Bluck
and S.
Walker
, “Time-domain BIE analysis of large three-dimensional electromagnetic scattering problems
,” IEEE Trans. Antennas Propag.
45
(5
), 894
–901
(1997
).8.
Y.
Ding
, A.
Forestier
, and T. H.
Duong
, “A Galerkin scheme for the time domain integral equation of acoustic scattering from a hard surface
,” J. Acoust. Soc. Am.
86
, 1566
–1572
(1989
).9.
T.
Ha-Duong
, B.
Ludwig
, and I.
Terrasse
, “A Galerkin BEM for transient acoustic scattering by an absorbing obstacle
,” Int. J. Numer. Methods Eng.
57
(13
), 1845
–1882
(2003
).10.
A.
Ergin
, B.
Shanker
, and E.
Michielssen
, “Analysis of transient wave scattering from rigid bodies using a Burton–Miller approach
,” J. Acoust. Soc. Am.
106
(5
), 2396
–2404
(1999
).11.
A.
Ergin
, B.
Shanker
, and E.
Michielssen
, “Fast transient analysis of acoustic wave scattering from rigid bodies using a two-level plane wave time domain algorithm
,” J. Acoust. Soc. Am.
106
(5
), 2405
–2416
(1999
).12.
A.
Ergin
, B.
Shanker
, and E.
Michielssen
, “Fast analysis of transient acoustic wave scattering from rigid bodies using the multilevel plane wave time domain algorithm
,” J. Acoust. Soc. Am.
107
(3
), 1168
–1178
(2000
).13.
B.
Rynne
, “Stability and convergence of time marching methods in scattering problems
,” IMA J. Appl. Math.
35
(3
), 297
–310
(1985
).14.
P. J.
Davies
, “Numerical stability and convergence of approximations of retarded potential integral equations
,” SIAM J. Numer. Anal.
31
(3
), 856
–875
(1994
).15.
D. S.
Weile
, G.
Pisharody
, N.-W.
Chen
, B.
Shanker
, and E.
Michielssen
, “A novel scheme for the solution of the time-domain integral equations of electromagnetics
,” IEEE Trans. Antennas Propag.
52
(1
), 283
–295
(2004
).16.
Y.
Beghein
, K.
Cools
, H.
Bagci
, and D.
De Zutter
, “A space-time mixed Galerkin marching-on-in-time scheme for the time-domain combined field integral equation
,” IEEE Trans. Antennas Propag.
61
(3
), 1228
–1238
(2013
).17.
A. J.
Pray
, Y.
Beghein
, N. V.
Nair
, K.
Cools
, H.
Bagci
, and B.
Shanker
, “A higher order space-time Galerkin scheme for time domain integral equations
,” IEEE Trans. Antennas Propag.
62
(12
), 6183
–6191
(2014
).18.
A.
Pray
, N.
Nair
, and B.
Shanker
, “Stability properties of the time domain electric field integral equation using a separable approximation for the convolution with the retarded potential
,” IEEE Trans. Antennas Propag.
60
(8
), 3772
–3781
(2012
).19.
B.
Shanker
, M.
Lu
, J.
Yuan
, and E.
Michielssen
, “Time domain integral equation analysis of scattering from composite bodies via exact evaluation of radiation fields
,” IEEE Trans. Antennas Propag.
57
(5
), 1506
–1520
(2009
).20.
Y.
Shi
, M.-Y.
Xia
, R.-S.
Chen
, E.
Michielssen
, and M.
Lu
, “Stable electric field TDIE solvers via quasi-exact evaluation of MOT matrix elements
,” IEEE Trans. Antennas Propag.
59
(2
), 574
–585
(2011
).21.
B.
Shanker
, A. A.
Ergin
, K.
Aygun
, and E.
Michielssen
, “Analysis of transient electromagnetic scattering phenomena using a two-level plane wave time-domain algorithm
,” IEEE Trans. Antennas Propag.
48
(4
), 510
–523
(2000
).22.
B.
Shanker
, A. A.
Ergin
, M.
Lu
, and E.
Michielssen
, “Fast analysis of transient electromagnetic scattering phenomena using the multilevel plane wave time domain algorithm
,” IEEE Trans. Antennas Propag.
51
(3
), 628
–641
(2003
).23.
A. E.
Yilmaz
, D. S.
Weile
, B.
Shanker
, J.-M.
Jin
, and E.
Michielssen
, “Fast analysis of transient scattering in lossy media
,” IEEE Antennas Wireless Propag. Lett.
1
(1
), 14
–17
(2002
).24.
A. E.
Yilmaz
, J.-M.
Jin
, and E.
Michielssen
, “Time domain adaptive integral method for surface integral equations
,” IEEE Trans. Antennas Propag.
52
(10
), 2692
–2708
(2004
).25.
H.
Bagci
, A. E.
Yilmaz
, V.
Lomakin
, and E.
Michielssen
, “Fast solution of mixed-potential time-domain integral equations for half-space environments
,” IEEE Trans. Geosci. Remote Sens.
43
(2
), 269
–279
(2005
).26.
H.
Bagci
, A. E.
Yilmaz
, J.-M.
Jin
, and E.
Michielssen
, “Fast and rigorous analysis of EMC/EMI phenomena on electrically large and complex cable-loaded structures
,” IEEE Trans. Electromagn. Compat.
49
(2
), 361
–381
(2007
).27.
H. A.
Ülkü
, H.
Bagci
, and E.
Michielssen
, “Marching on-in-time solution of the time domain magnetic field integral equation using a predictor-corrector scheme
,” IEEE Trans. Antennas Propag.
61
(8
), 4120
–4131
(2013
).28.
S.
Rao
, D.
Wilton
, and A.
Glisson
, “Electromagnetic scattering by surfaces of arbitrary shape
,” IEEE Trans. Antennas Propag.
30
(3
), 409
–418
(1982
).29.
A. D.
Pierce
, Acoustics: An Introduction to its Physical Principles and Applications
(McGraw-Hill
, New York
, 1981
).30.
J.
Li
, D.
Dault
, and B.
Shanker
, “A quasianalytical time domain solution for scattering from a homogeneous sphere
,” J. Acoust. Soc. Am.
135
(4
), 1676
–1685
(2014
).31.
L. F.
Canino
, J. J.
Ottusch
, M. A.
Stalzer
, J. L.
Visher
, and S. M.
Wandzura
, “Numerical solution of the Helmholtz equation in 2D and 3D using a high-order Nyström discretization
,” J. Comput. Phys.
146
(2
), 627
–663
(1998
).32.
M. S.
Tong
, W. C.
Chew
, and M. J.
White
, “Multilevel fast multipole algorithm for acoustic wave scattering by truncated ground with trenches
,” J. Acoust. Soc. Am.
123
(5
), 2513
–2521
(2008
).33.
G.
Kang
, J.
Song
, W. C.
Chew
, K. C.
Donepudi
, and J.-M.
Jin
, “A novel grid-robust higher order vector basis function for the method of moments
,” IEEE Trans. Antennas Propag.
49
(6
), 908
–915
(2001
).34.
G.
Manara
, A.
Monorchio
, and R.
Reggiannini
, “A space-time discretization criterion for a stable time-marching solution of the electric field integral equation
,” IEEE Trans. Antennas Propag.
45
(3
), 527
–532
(1997
).35.
K.
Aygun
, B.
Shanker
, A. A.
Ergin
, and E.
Michielssen
, “A two-level plane wave time-domain algorithm for fast analysis of EMC/EMI problems
,” IEEE Trans. Electromagn. Compat.
44
(1
), 152
–164
(2002
).36.
R. W.
Freund
, “A transpose-free quasi-minimal residual algorithm for non-Hermitian linear systems
,” SIAM J. Sci. Comput.
14
(2
), 470
–482
(1993
).37.
S. B.
Sayed
, H.
Ulku
, and H.
Bagci
, “Stable quasi-explicit MOT solver for the time domain volume electric field integral equation
,” in Applied Computational Electromagnetics Symposium
(2014
), pp. 416
–420
.38.
E.
Hairer
, S. P.
Norsett
, and G.
Warner
, Solving Ordinary Differential Equations I: Nonstiff Problems
(Springer
, New York
, 2010
).39.
A.
Glaser
and V.
Rokhlin
, “A new class of highly accurate solvers for ordinary differential equations
,” J. Sci. Comput.
38
(3
), 368
–399
(2009
).40.
A.
Dutt
, L.
Greengard
, and V.
Rokhlin
, “Spectral deferred correction methods for ordinary differential equations
,” BIT Numer. Math.
40
(2
), 241
–266
(2000
).41.
D.
Colton
and R.
Kress
, Integral Equation Methods in Scattering Theory
(SIAM
, Philadelphia, PA
, 2013
).42.
Y.
Shi
, H.
Bagci
, and M.
Lu
, “On the internal resonant modes in marching-on-in-time solution of the time domain electric field integral equation
,” IEEE Trans. Antennas Propag.
61
(8
), 4389
–4392
(2013
).43.
Y.
Shi
, H.
Bagci
, and M.
Lu
, “On the DC loop modes in the MOT solution of the time domain EFIE
,” in IEEE Antennas and Propagation Society Symposium
(2014
), pp. 1891
–1892
.44.
C. C.
Chien
, H.
Rajiyah
, and S. N.
Atluri
, “An effective method for solving the hyper-singular integral equations in 3-D acoustics
,” J. Acoust. Soc. Am.
88
(2
), 918
–937
(1990
).45.
Y.
Brick
and A.
Boag
, “Multilevel nonuniform grid algorithm for acceleration of integral equation-based solvers for acoustic scattering
,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control
57
(1
), 262
–273
(2010
).46.
S.
Turley
, “Acoustic scattering from a sphere
,” Class Notes, Department of Physics and Astronomy, Brigham Young University, Provo, UT (2006
).47.
M. G.
Duffy
, “Quadrature over a pyramid or cube of integrands with a singularity at a vertex
,” SIAM J. Numer. Anal.
19
(6
), 1260
–1262
(1982
).48.
M.
Guiggiani
, G.
Krishnasamy
, T. J.
Rudolphi
, and F.
Rizzo
, “A general algorithm for the numerical solution of hypersingular boundary integral equations
,” J. Appl. Mech.
59
(3
), 604
–614
(1992
).© 2019 Author(s).
2019
Author(s)
You do not currently have access to this content.