In this study, the three-dimensional Cartesian acoustic parabolic equation is fully solved in the stair-step representation of an ocean environment based on the split-step Padé algorithm. The sum representation of the Padé approximation of a full exponential operator in the split-step marching solution is used for parallel computing. A stabilized self-starter solution is derived in the same way. This solver is benchmarked against reference solutions for a rectangular duct propagation, an ideal wedge problem, and an axisymmetric ocean. Additionally, a solution for the Gaussian canyon problem is provided and compared with that obtained from the approximate parabolic equation solver, considering a leading-order cross-term.
References
1.
D. B.
Kirk
and W. W.
Hwu
, Programming Massively Parallel Processors: A Hands-on Approach
, 3rd ed. (Elsevier
, New York
, 2017
), Chap. 1.2.
M. D.
Collins
, “Generalization of the split-step Padé solution
,” J. Acoust. Soc. Am.
96
, 382
–385
(1994
).3.
M. D.
Collins
, “A split-step Padé for the parabolic equation method
,” J. Acoust. Soc. Am.
93
, 1736
–1742
(1993
).4.
M. D.
Collins
and S. A.
Chin-Bing
, “A three-dimensional parabolic equation model that includes the effects of rough boundaries
,” J. Acoust. Soc. Am.
87
, 1104
–1109
(1990
).5.
D.
Lee
, G.
Botseas
, and W. L.
Siegmann
, “Examination of three-dimensional effects using a propagation model with azimuth-coupling capacity (FOR3D)
,” J. Acoust. Soc. Am.
91
, 3192
–3202
(1992
).6.
J. A.
Fawcett
, “Modeling three-dimensional propagation in an ocean wedge using parabolic equation methods
,” J. Acoust. Soc. Am.
93
, 2627
–2632
(1993
).7.
K. B.
Smith
, “A three-dimensional propagation algorithm using finite azimuthal aperture
,” J. Acoust. Soc. Am.
106
, 3231
–3239
(1999
).8.
G. H.
Brooke
, D. J.
Thomson
, and G. R.
Ebbeson
, “PECAN: A Canadian parabolic equation model for underwater sound propagation
,” J. Comput. Acoust.
9
, 69
–100
(2001
).9.
F.
Sturm
and J. A.
Fawcett
, “On the use of higher-order azimuthal schemes in 3-D PE modeling
,” J. Acoust. Soc. Am.
113
, 3134
–3145
(2003
).10.
F.
Sturm
, “Numerical study of broadband sound pulse propagation in three-dimensional oceanic waveguides
,” J. Acoust. Soc. Am.
117
, 1058
–1079
(2005
).11.
L.
Hsieh
, C.
Chen
, M.
Yuan
, and Y.
Lin
, “Azimuthal limitation in 3D PE approximation for underwater acoustic propagation
,” J. Comput. Acoust.
15
, 221
–233
(2007
).12.
Y.
Lin
and T. F.
Duda
, “A higher-order split-step Fourier parabolic-equation sound propagation solution scheme
,” J. Acoust. Soc. Am.
132
, EL61
–EL67
(2012
).13.
Y.
Lin
, J. M.
Collis
, and T. F.
Duda
, “A three-dimensional parabolic equation model of sound propagation using higher-order operator splitting and Padé approximations
,” J. Acoust. Soc. Am.
132
, EL364
–EL370
(2012
).14.
Y.
Lin
, T. F.
Duda
, and A. E.
Newhall
, “Three-dimensional sound propagation models using the parabolic-equation approximation and the split-step Fourier method
,” J. Comput. Acoust.
21
, 1250018
(2013
).15.
F.
Sturm
, “Leading-order cross term correction of three-dimensional parabolic equation models
,” J. Acoust. Soc. Am.
139
, 263
–270
(2016
).16.
C.
Xu
, J.
Tang
, S.
Piao
, J.
Liu
, and S.
Zhang
, “Developments of parabolic equation method in the period of 2000–2016
,” Chin. Phys. B
25
, 124315
(2016
).17.
M. F.
Levy
and A. A.
Zaporozhets
, “Target scattering calculations with the parabolic equation method
,” J. Acoust. Soc. Am.
103
, 735
–741
(1998
).18.
K.
Lee
and W.
Seong
, “Full 3D one-way parabolic equation algorithm
,” J. Acoust. Soc. Kr.
25
, 67
–68
(2006
) (in Korean).19.
J. M.
Collis
, “Three-dimensional underwater sound propagation using a split-step Padé parabolic equation solution
,” J. Acoust. Soc. Am.
130
, 2528
(2011
).20.
K.
Lee
and W.
Seong
, “The perfectly matched layer applied to the split-step Padé PE solver in an ocean waveguide
,” J. Acoust. Soc. Kr.
25
, 131
–135
(2006
).21.
M.
Levy
, Parabolic Equation Methods for Electromagnetic Wave Propagation
(The IEE
, London
, 2011
), Chap. 8.3.22.
M. D.
Collins
, “Higher-order Padé approximations for accurate and stable elastic parabolic equations with application to interface wave propagation
,” J. Acoust. Soc. Am.
89
, 1050
–1057
(1991
).23.
R. J.
Cederberg
and M. D.
Collins
“Application of an improved self-starter to geoacoustic inversion
,” IEEE J. Ocean. Eng.
22
, 102
–109
(1997
).24.
M. D.
Collins
, “A self-starter for the parabolic equation method
,” J. Acoust. Soc. Am.
92
, 2069
–2074
(1992
).25.
M. D.
Collins
, “The stabilized self-starter
,” J. Acoust. Soc. Am.
106
, 1724
–1726
(1999
).26.
F. A.
Milinazzo
, C. A.
Zala
, and G. H.
Brooke
, “Rational square-root approximations for parabolic equation algorithms
,” J. Acoust. Soc. Am.
101
, 760
–766
(1997
).27.
T.
Kim
, “Numerical observation of the statistics of acoustic wave propagation through a shallow water environment
,” M.S. thesis, Seoul National University
, Seoul, 2003
.28.
H. D.
Geiger
and P. F.
Daley
, “Finite difference modelling of the full acoustic wave equation in Matlab
,” CREWES Res. Rep.
15
, 1
–9
(2003
).29.
MathWorks
, Parallel Computing Toolbox: User's Guide
(The MathWorks, Inc.
, MA
, 2018
).30.
F. B.
Jensen
, W. A.
Kuperman
, M. B.
Porter
, and H.
Schmidt
, Computational Ocean Acoustics
, 2nd ed. (Springer
, New York
, 2011
), Chap. 6.31.
G. B.
Deane
and M. J.
Buckingham
, “An analysis of the three-dimensional sound field in a penetrable wedge with a stratified fluid or elastic basement
,” J. Acoust. Soc. Am.
93
, 1319
–1328
(1993
).32.
J.
Tang
, P. S.
Petrov
, S.
Piao
, and S. B.
Kozitskiy
, “On the method of source images for the wedge problem solution in ocean acoustics: Some corrections and appendices
,” Acoust. Phys.
64
, 225
–236
(2018
).33.
A.
Tolstoy
, K. B.
Smith
, and N.
Maltsev
, “The SWAM'99 workshop—An overview
,” J. Comput. Acoust.
9
, 1
–16
(2001
).34.
K.
Lee
, W.
Seong
, and Y.
Na
, “Three-dimensional Cartesian parabolic equation model with higher order cross-terms using operator splitting, rational filtering, and split-step Padé algorithm
,” J. Acoust. Soc. Am.
146
(3
), 2041
–2049
(2019
).35.
M. D.
Collins
, “User's guide for RAM versions 1.0 and 1.0p
,” Technical report, Naval Research Laboratory, Washington, D.C.36.
M. D.
Collins
and W. A.
Westwood
, “A higher-order energy-conserving parabolic equation for range-dependent ocean depth, sound speed, and density
,” J. Acoust. Soc. Am.
89
, 1068
–1075
(1991
).© 2019 Acoustical Society of America.
2019
Acoustical Society of America
You do not currently have access to this content.