An approximate form of three-dimensional Cartesian split-step marching solution for the acoustic parabolic equation is derived in order to obtain the efficient algorithm for sound propagation in the three-dimensional ocean. The operator splitting method is used to split the full exponential operator into three exponential operators for depth, cross-range, and the combination of the two. The first two terms are implemented with the split-step Padé algorithm and the final term is implemented with the Taylor series expansion in depth and cross-range operator. In order to resolve the divergence of Taylor approximation out of the interval of convergence, the rational filter of rectangular type is applied to the depth and cross-range operator. The use of the filter improves the stability of the solution but requires extra numerical burdens. Numerical issues involving the accuracy, efficiency, and stability of the proposed model are discussed and illustrated in an ocean wedge environment.

1.
Aki
,
K.
, and
Richards
,
P. G.
(
2002
).
Quantitative Seismology
, 2nd ed. (
University Science Books
,
Sausalito, CA
), Chap. 6.1.
2.
Brekhovskikh
,
L. M.
, and
Lysanov
,
Y. P.
(
1991
).
Fundamentals of Ocean Acoustics
, 2nd ed. (
Springer
,
New York
), Chap. 4.
3.
Cederberg
,
R. J.
, and
Collins
,
M. D.
(
1997
). “
Application of an improved self-starter to geoacoustic inversion
,”
IEEE J. Ocean. Eng.
22
,
102
109
.
4.
Cederberg
,
R. J.
,
Collins
,
M. D.
,
Schmidt
,
H.
, and
Seigmann
,
W. L.
(
1997
). “
Rational operators for filtering
,”
J. Acoust. Soc. Am.
101
,
2518
2523
.
5.
Collins
,
M. D.
(
1989
). “
A higher-order parabolic equation for wave propagation in an ocean overlying an elastic bottom
,”
J. Acoust. Soc. Am.
86
,
1459
1464
.
6.
Collins
,
M. D.
(
1991
). “
Higher-order Padé approximations for accurate and stable elastic parabolic equations with application to interface wave propagation
,”
J. Acoust. Soc. Am.
89
,
1050
1057
.
7.
Collins
,
M. D.
(
1993
). “
A split-step Padé for the parabolic equation method
,”
J. Acoust. Soc. Am.
93
,
1736
1742
.
8.
Collins
,
M. D.
(
1999
). “
The stabilized self-starter
,”
J. Acoust. Soc. Am.
106
,
1724
1726
.
9.
Deane
,
G. B.
, and
Buckingham
,
M. J.
(
1993
). “
An analysis of the three-dimensional sound field in a penetrable wedge with a stratified fluid or elastic basement
,”
J. Acoust. Soc. Am.
93
,
1319
1328
.
10.
Geiger
,
H. D.
, and
Daley
,
P. F.
(
2003
). “
Finite difference modelling of the full acoustic wave equation in Matlab
,”
CREWES Research Report
15
,
1
9
.
11.
Hsieh
,
L.
,
Chen
,
C.
,
Yuan
,
M.
, and
Lin
,
Y.
(
2007
). “
Azimuthal limitation in 3D PE approximation for underwater acoustic propagation
,”
J. Comput. Acoust.
15
,
221
233
.
12.
Jensen
,
F. B.
,
Kuperman
,
W. A.
,
Porter
,
M. B.
, and
Schmidt
,
H.
(
2011
).
Computational Ocean Acoustics
, 2nd ed. (
Springer
,
New York
), Chap. 6.
13.
Kim
,
T.
(
2003
). “
Numerical observation of the statistics of acoustic wave propagation through a shallow water environment
,” M.D. thesis,
Seoul National University
.
14.
Lee
,
K.
, and
Seong
,
W.
(
2006a
). “
Full 3D one-way parabolic equation algorithm
,”
J. Acoust. Soc. Kr.
25
,
67
68
(in Korean).
15.
Lee
,
K.
, and
Seong
,
W.
(
2006b
). “
The perfectly matched layer applied to the split-step Padé PE solver in an ocean waveguide
,”
J. Acoust. Soc. Kr.
25
,
131
136
.
16.
Lee
,
K.
,
Seong
,
W.
, and
Na
,
Y.
(
2019
). “
A split-step Padé solver for the three-dimensional Cartesian acoustic parabolic equation in the stair-step representation of ocean environment
,”
J. Acoust. Soc. Am.
146
(
3
),
2050
2057
.
17.
Lin
,
Y.
,
Collis
,
J. M.
, and
Duda
,
T. F.
(
2012
). “
A three-dimensional parabolic equation model of sound propagation using higher-order operator splitting and Padé approximations
,”
J. Acoust. Soc. Am.
132
,
EL364
EL370
.
18.
Lin
,
Y.
, and
Duda
,
T. F.
(
2012
). “
A higher-order split-step Fourier parabolic-equation sound propagation solution scheme
,”
J. Acoust. Soc. Am.
132
,
EL61
EL67
.
19.
Lin
,
Y.
,
Duda
,
T. F.
, and
Newhall
,
A. E.
(
2013
). “
Three-dimensional sound propagation models using the parabolic-equation approximation and the split-step Fourier method
,”
J. Comput. Acoust.
21
,
1250018
.
20.
Milinazzo
,
F. A.
,
Zala
,
C. A.
, and
Brooke
,
G. H.
(
1997
). “
Rational square-root approximations for parabolic equation algorithms
,”
J. Acoust. Soc. Am.
101
,
760
766
.
21.
Petrov
,
P.
(
2018
). “
Analytic solution for the penetrable wedge shaped ocean based on the G. Deane and M. Buckingham paper (JASA 1993)
,” available at http://oalib.hlsresearch.com/ThreeD/Petrov/ (Last viewed 9/5/2019).
22.
Smith
,
K. B.
(
2001
). “
Convergence, stability, and variability of shallow water acoustic predictions using a split-step Fourier parabolic equation model
,”
J. Comput. Acoust.
9
,
243
285
.
23.
Sturm
,
F.
(
2005
). “
Numerical study of broadband sound pulse propagation in three-dimensional oceanic waveguides
,”
J. Acoust. Soc. Am.
117
,
1058
1079
.
24.
Sturm
,
F.
(
2016
). “
Leading-order cross term correction of three-dimensional parabolic equation models
,”
J. Acoust. Soc. Am.
139
,
263
270
.
25.
Sturm
,
F.
, and
Fawcett
,
J. A.
(
2003
). “
On the use of higher-order azimuthal schemes in 3-D PE modeling
,”
J. Acoust. Soc. Am.
113
,
3134
3145
.
26.
Westwood
,
E. K.
(
1992
). “
Broadband modeling of the three-dimensional penetrable wedge
,”
J. Acoust. Soc. Am.
92
,
2212
2222
.
27.
Yevick
,
D.
, and
Thomson
,
D.
(
1997
). “
A hybrid split-step/finite-difference PE algorithm for variable-density media
,”
J. Acoust. Soc. Am.
101
,
1328
1335
.
You do not currently have access to this content.