Beam tracing is an extension of ray tracing that constructs beams around the central rays radiating from a source. Typically, a fan of such beams is used to represent a point source and the field at any given location is computed by coherently summing all contributing beams. On a slightly superficial level, one points to the following key benefits: (1) improved accuracy because the beams smooth out singularities of the ray-theoretic field, and (2) algorithmic advantages because eigenrays precisely connecting the source and the receiver do not need to be identified. One may argue about these considerations; however, beam tracing methods have emerged as a very important class of methods for computing ocean acoustic fields. Interestingly, the published literature has not kept up with the numerous advances in beam tracing, including algorithmic developments that are important to efficient and robust implementations. Furthermore, there are quite a few variants of beam tracing algorithms with very different characteristics. This article discusses these variants, significant advances in practical implementation, and performance characteristics.

1.
H. P.
Bucker
and
M. B.
Porter
, “
Gaussian beams and 3D bottom interacting acoustic systems
,” in
Bottom Interacting Ocean Acoustics
, edited by
T.
Akal
and
J.
Berkson
(
Plenum Press
,
New York
,
1986
), pp.
87
101
.
2.
M. G.
Brown
, “
Application of the WKBJ Green's function to acoustic propagation in horizontally stratified oceans
,”
J. Acoust. Soc. Am.
71
,
1427
1432
(
1982
).
3.
R. A.
Wiggins
, “
Body wave amplitude calculations. II
,”
Geophys. J. Int.
46
(
1
),
1
10
(
1976
).
4.
V.
Červený
,
M. M.
Popov
, and
I.
Pšenčík
, “
Computation of wave fields in inhomogeneous media—Gaussian beam approach
,”
Geoph. J. R. Astr. Soc.
70
,
109
128
(
1982
).
5.
M. B.
Porter
and
H. P.
Bucker
, “
Gaussian beam tracing for computing ocean acoustic fields
,”
J. Acoust. Soc. Am.
82
,
1349
1359
(
1987
).
6.
V.
Červený
,
Seismic Ray Theory
(
Cambridge University Press
,
Cambridge, UK
,
2001
).
7.
M.
Popov
,
Ray Theory and Gaussian Beam Method for Geophysicists
(
Universidade Federal da Bahia, Instituto de Geociências
,
Salvador-Bahia, Brazil
,
2002
).
8.
F.
Tappert
, “
Hyper: A hybrid parabolic equation ray model for high frequency underwater sound propagation
,”
J. Acoust. Soc. Am.
74
(
S1
),
S96
S96
(
1983
).
9.
H.
Weinberg
and
R.
Keenan
, “
Gaussian ray bundles for modeling high-frequency propagation loss under shallow-water conditions
,”
J. Acoust. Soc. Am.
100
,
1421
1431
(
1996
).
10.
O.
Rodríguez
,
F.
Sturm
,
P.
Petrov
, and
M.
Porter
, “
Three-dimensional model benchmarking for cross-slope wedge propagation
,”
Proc. Mtg. Acoust.
30
,
070004
(
2017
).
11.
R.
Calazan
and
O.
Rodríguez
, “
Simplex based three-dimensional eigenray search for underwater predictions
,”
J. Acoust. Soc. America
143
(
4
),
2059
2065
(
2018
).
12.
R.
Calazan
, “
Numerical enhancements and parallel GPU implementation of the traceo3d model
,” Ph.D. thesis,
University of Algarve
, Faro, Portugal,
2018
.
13.
T.
Funkhouser
,
N.
Tsingos
,
I.
Carlbom
,
G.
Elko
,
M.
Sondhi
,
J. E.
West
,
G.
Pingali
,
P.
Min
, and
A.
Ngan
, “
A beam tracing method for interactive architectural acoustics
,”
J. Acoust. Soc. Am.
115
(
2
),
739
756
(
2004
).
14.
L.
Savioja
and
U. P.
Svensson
, “
Overview of geometrical room acoustic modeling techniques
,”
J. Acoust. Soc. Am.
138
(
2
),
708
730
(
2015
).
15.
G. A.
Deschamps
, “
Gaussian beam as a bundle of complex rays
,”
Electr. Lett.
7
(
23
),
684
685
(
1971
).
16.
F.
Jensen
,
W.
Kuperman
,
M.
Porter
, and
H.
Schmidt
,
Computational Ocean Acoustics
, Second edition (
Springer
,
New York
,
2012
).
17.
M. B.
Porter
, “
Bellhop user guide
,” Technical Report, Heat, Light, and Sound Research, Inc., San Diego, CA,
2010
.
18.
V. M.
Babich
and
M. M.
Popov
, “
Propagation of concentrated sound beams in a three-dimensional inhomogeneous medium
,”
Sov. Phys. Acoust.
27
(
6
),
459
462
(
1981
).
19.
M. B.
Porter
, “
Bellhop3d user guide
,” Technical Report, Heat, Light, and Sound Research, Inc., San Diego, CA,
2016
.
20.
V.
Červený
and
F.
Hron
, “
The ray series method and dynamic ray tracing system for three-dimensional inhomogeneous media
,”
Bull. Seismol. Soc. Am.
70
,
47
77
(
1980
).
21.
M. M.
Popov
, “
A method of calculating the geometric divergence in an inhomogeneous medium with interfaces
,”
Doklady Akad. Nauk SSSR
237
,
40
42
(
1977
).
22.
M. B.
Porter
and
H. P.
Bucker
, “
Applications of gaussian beam tracing to two and three-dimensional problems in ocean acoustics
,” in
Numerical and Applied Mathematics
, edited by
W. F.
Ames
(
Springer
,
New York
,
1989
), pp.
335
339
.
23.
M. M.
Popov
and
I.
Pšenčík
, “
Computation of ray amplitudes in inhomogeneous media with curved interfaces
,”
Studia Geoph. Geod.
22
,
248
258
(
1978
).
24.
V.
Červený
and
I.
Pšenčík
, “
Ray amplitudes of seismic body waves in laterally inhomogeneous media
,”
Geoph. J. R. Astr. Soc.
57
,
91
106
(
1979
).
25.
H. P.
Bucker
, “
A simple 3D gaussian beam sound propagation model for shallow water
,”
J. Acoust. Soc. Am.
95
(
5
),
2437
2440
(
1994
).
26.
S. M.
Reilly
,
G. R.
Potty
, and
M.
Goodrich
, “
Computing acoustic transmission loss using 3d gaussian ray bundles in geodetic coordinates
,”
J. Comput. Acoust.
24
(
01
),
1650007
(
2016
).
27.
D. L.
Bradley
and
A. A.
Hudimac
, “
The propagation of sound in a wedge shaped shallow duct
,” Naval Ordnance Laboratory Report No. NOLTR 70-235, Washington, DC,
1970
.
28.
M. J.
Buckingham
, “
Acoustic propagation in a wedge-shaped ocean with perfectly reflecting boundaries
,” Naval Research Laboratory Report No. 8793, Washington, DC,
1984
.
29.
R.
Doolittle
,
A.
Tolstoy
, and
M.
Buckingham
, “
Experimental confirmation of horizontal refraction of CW acoustic radiation from a point source in a wedge-shaped ocean environment
,”
J. Acoust. Soc. Am.
83
(
6
),
2117
2125
(
1988
).
30.
F.
Sturm
, “
Numerical study of broadband sound pulse propagation in three-dimensional oceanic waveguides
,”
J. Acoust. Soc. Am.
117
,
1058
1079
(
2005
).
31.
F.
Sturm
, “
Leading-order cross term correction of three-dimensional parabolic equation models
,”
J. Acoust. Soc. Am.
139
,
263
270
(
2016
).
32.
A. T.
Abawi
, “
On the numerically exact solution of a class of three-dimensional propagation problems
,” Technical Report, Heat, Light, and Sound Research, Inc., San Diego, CA,
2019
.
33.
Y.-T.
Lin
,
T. F.
Duda
, and
A.
Newhall
, “
Three-dimensional sound propagation models using the parabolic-equation approximation and the split-step Fourier method
,”
J. Comput. Acoust.
21
,
1250018
(
2013
).
34.
Y. T.
Lin
(private communication,
2019
).
You do not currently have access to this content.