In 2004, Leighton hypothesized that the acoustic calls emitted by humpback whales when feeding using bubble nets, may enhance the effectiveness of the net in confining prey (such as herring) by forming a “wall of sound” with a quiet zone within. Modelling of the acoustics of this phenomenon was previously restricted to 2D; this paper conducts a 3D model of the propagation of signals resembling those emitted by humpback whales when bubble netting, projected into an upward spiral bubble net which data to date suggest is the accurate form for the bubble net in 3D space. In this study, the feeding calls were analyzed in the time-frequency domain to extract acoustic information sufficient to allow modeling of the resulting spatial distribution of acoustic pressure and particle velocity, and how they vary over the duration of the call. Sound propagation in the bubble net was described by using a linear steady-state formulation for an effective medium of bubbly water. Using the predicted attenuation, phase velocity and density in bubbly water, a 3D finite element model was constructed to numerically simulate the upward-spiral bubble net which consists of a mixture of bubbles that exhibit a range of radii. The acoustic pressure field and particle motion field were both calculated within the bubble net. The simulation results show that the energy of the whale feeding call could be effectively focused in the bubble net, generating intensive sound pressure and particle motion fields in the bubbly arm of the net, but with some “quiet” regions closer to the center of the net, as Leighton hypothesized. Furthermore, when the hearing ability of herring is taken into consideration, the results suggest that this acoustic focusing effect could be a plausible factor in trapping them in the bubble net. It also allows speculation on the possible enhancements that the time-varying nature of the call during feeding could give to the whale in this mechanism for the bubble net feeding by humpback whales.

1.
J.
Allen
,
M.
Weinrich
,
W.
Hoppitt
, and
L.
Rendell
, “
Network-based diffusion analysis reveals cultural transmission of lobtail feeding in humpback whales
,”
Science
340
(
6131
),
485
488
(
2013
).
2.
F. A.
Sharpe
and
L. M.
Dill
, “
The behavior of pacific herring schools in response to artificial humpback whale bubbles
,”
Can. J. Zool.
75
(
5
),
725
730
(
1997
).
3.
D.
Wiley
,
C.
Ware
,
A.
Bocconcelli
,
D.
Cholewiak
,
A.
Friedlaender
,
M.
Thompson
, and
M.
Weinrich
, “
Underwater components of humpback whale bubble-net feeding behaviour
,”
Behaviour
148
(
5
),
575
602
(
2011
).
4.
T. G.
Leighton
,
S. D.
Richards
, and
P. R.
White
, “
Trapped within a wall of sound
,”
Acoust. Bull.
29
,
24
29
(
2004
).
5.
C. G.
D'Vincent
,
R. M.
Nilson
, and
R. E.
Hanna
, “
Vocalization and coordinated feeding behavior of the humpback whale in southeastern Alaska
,”
Sci. Rep. Whales Res. Inst.
36
,
41
47
(
1985
).
6.
T. G.
Leighton
,
D.
Finfer
,
E.
Grover
, and
P. R.
White
, “
An acoustical hypothesis for the spiral bubble nets of humpback whales and the implications for whale feeding
,”
Acoust. Bull.
22
(
1
),
17
21
(
2007a
).
7.
T. G.
Leighton
,
D. C.
Finfer
, and
P. R.
White
, “
Cavitation and cetacean
,”
Rev. Acúst.
38
(
3-4
),
37
81
(
2007
).
8.
T. G.
Leighton
, “
From seas to surgeries, from babbling brooks to baby scans: The acoustics of gas bubbles in liquids
,”
Int. J. Mod. Phys. B
18
(
25
),
3267
3314
(
2004
).
9.
R. S.
Payne
and
S.
McVay
, “
Songs of humpback whales
,”
Science
173
(
3997
),
585
597
(
1971
).
10.
R. A.
Dunlop
,
M. J.
Noad
,
D. H.
Cato
, and
D.
Stokes
, “
The social vocalization repertoire of east Australian migrating humpback whales (Megaptera novaeangliae)
,”
J. Acoust. Soc. Am.
122
(
5
),
2893
2905
(
2007
).
11.
E.
Jourdain
and
D.
Vongraven
, “
Humpback whale (Megaptera novaeangliae) and killer whale (Orcinus orca) feeding aggregations for foraging on herring (Clupea harengus) in northern norway
,”
Mammal. Biol.
86
,
27
32
(
2017
).
12.
F. A.
Sharpe
, “
Social foraging of the southeast Alaskan humpback whale, Megaptera novaengliae
,” Ph.D. dissertation,
University of Washington
, Seattle, WA,
1984
.
13.
T. G.
Leighton
and
P. R.
White
, “
Dolphin-inspired target detection for sonar and radar
,”
Arch. Acoust.
39
(
3
),
319
332
(
2014
).
14.
D. A.
Mann
,
A. N.
Popper
, and
B.
Wilson
, “
Pacific herring hearing does not include ultrasound
,”
Biol. Lett.
1
(
2
),
158
161
(
2005
).
15.
A. N.
Popper
,
D. T. T.
Plachta
,
D. A.
Mann
, and
D.
Higgs
, “
Response of clupeid fish to ultrasound: A review
,”
ICES J. Mar. Sci.
61
(
7
),
1057
1061
(
2004
).
16.
J. M.
Allen
,
J.
Blaxter
, and
E.
Denton
, “
The functional anatomy and development of the swimbladder-inner ear-lateral line system in herring and sprat
,”
J. Mar. Biol. Assoc. U. K.
56
(
2
),
471
486
(
1976
).
17.
T. A.
Mooney
,
M. B.
Kaplan
, and
M. O.
Lammers
, “
Singing whales generate high levels of particle motion: Implications for acoustic communication and hearing?
,”
Biol. Lett.
12
(
11
),
20160381
(
2016
).
18.
T. G.
Leighton
, “
What is ultrasound?
,”
Prog. Biophys. Mol. Biol.
93
(
1-3
),
3
83
(
2007
).
19.
T. G.
Leighton
,
S.
Meers
, and
P.
White
, “
Propagation through nonlinear time-dependent bubble clouds and the estimation of bubble populations from measured acoustic characteristics
,”
Proc. R. Soc. London Ser. A: Math. Phys. Eng. Sci.
460
,
2521
2550
(
2004
).
20.
C.
Wei
,
W. W. L.
Au
,
D. R.
Ketten
, and
Y.
Zhang
, “
Finite element simulation of broadband biosonar signal propagation in the near- and far-field of an echolocating Atlantic bottlenose dolphin (Tursiops truncatus)
,”
J. Acoust. Soc. Am.
143
(
5
),
2611
2620
(
2018
).
21.
M. A.
Ainslie
and
T. G.
Leighton
, “
Review of scattering and extinction cross-sections, damping factors, and resonance frequencies of a spherical gas bubble
,”
J. Acoust. Soc. Am.
130
(
5
),
3184
3208
(
2011
).
22.
K. W.
Commander
and
A.
Prosperetti
, “
Linear pressure waves in bubbly liquids: Comparison between theory and experiments
,”
J. Acoust. Soc. Am.
85
(
2
),
732
746
(
1989
).
23.
S. G.
Kargl
, “
Effective medium approach to linear acoustics in bubbly liquids
,”
J. Acoust. Soc. Am.
111
(
1
),
168
173
(
2002
).
24.
A.
Ingebrigtsen
,
Whales Caught in the North Atlantic and Other Seas
, Rapports et Proces-Verbaux des Reunions (
Conseil Permanent International pour l'Exploration de la Mer
,
London
,
1929
), Vol.
56
, pp.
123
135
.
25.
C. M.
Jurasz
and
V. P.
Jurasz
, “
Feeding modes of the humpback whale, Megaptera novaeangliae, in southeast Alaska
,”
Sci. Rep. Whales Res. Inst.
31
,
69
83
(
1979
).
26.
J. H. W.
Hain
,
G. R.
Carter
,
S. D.
Kraus
,
C. A.
Mayo
, and
H. E.
Winni
, “
Feeding behavior of the humpback whale, Megaptera novaeangliae, in the western north Atlantic
,”
Fish. Bull.
80
(
2
),
259
268
(
1982
).
27.
M. T.
Weinrich
,
M. R.
Schilling
, and
C. R.
Belt
, “
Evidence for acquisition of a novel feeding behaviour: Lobtail feeding in humpback whales, Megaptera novaeangliae
,”
Anim. Behav.
44
(
6
),
1059
1072
(
1992
).
28.
W. W. L.
Au
,
A. A.
Pack
,
M. O.
Lammers
,
L. M.
Herman
,
M. H.
Deakos
, and
K.
Andrews
, “
Acoustic properties of humpback whale songs
,”
J. Acoust. Soc. Am.
120
(
2
),
1103
1110
(
2006
).
29.
P. O.
Thompson
,
W. C.
Cummings
, and
S. J.
Ha
, “
Sounds, source levels, and associated behavior of humpback whales, southeast Alaska
,”
J. Acoust. Soc. Am.
80
(
3
),
735
740
(
1986
).
30.
J. S.
Reidenberg
and
J. T.
Laitman
, “
Blowing bubbles: An aquatic adaptation that risks protection of the respiratory tract in humpback whales (Megaptera novaeangliae)
,”
Anat. Rec. Adv. Integr. Anat. Evol. Biol.
290
(
6
),
569
580
(
2007
).
31.
T. G.
Leighton
,
The Acoustic Bubble
(
Academic
,
New York
,
2012
), pp.
67
71
.
32.
T. G.
Leighton
,
J.
Jiang
, and
K.
Baik
, “
Demonstration comparing sound wave attenuation inside pipes containing bubbly water and water droplet fog
,”
J. Acoust. Soc. Am.
131
(
3
),
2413
2421
(
2012
).
33.
T. G.
Leighton
,
D. G. H.
Coles
,
M.
Srokosz
,
P. R.
White
, and
D. K.
Woolf
, “
Asymmetric transfer of CO2 across a broken sea surface
,”
Sci. Rep.
8
(
1
),
8301
(
2018
).
34.
T. G.
Leighton
,
K. J.
Fagan
, and
J. E.
Field
, “
Acoustic and photographic studies of injected bubbles
,”
Eur. J. Phys.
12
(
2
),
77
(
1991
).
35.
T. G.
Leighton
and
P. R.
White
, “
Quantification of undersea gas leaks from carbon capture and storage facilities, from pipelines and from methane seeps, by their acoustic emissions
,”
Proc. R. Soc. London Ser. A: Math. Phys. Eng. Sci.
468
(
2138
),
485
510
(
2011
).
36.
J.
Blackford
,
H.
Stahl
,
J. M.
Bull
,
B. J.
Bergès
,
M.
Cevatoglu
,
A.
Lichtschlag
,
D.
Connelly
,
R. H.
James
,
J.
Kita
,
D.
Long
,
M.
Naylor
,
K.
Shitashima
,
D.
Smith
,
P.
Taylor
,
I.
Wright
,
M.
Akhurst
,
B.
Chen
,
T. M.
Gernon
,
C.
Hauton
,
M.
Hayashi
,
H.
Kaieda
,
T. G.
Leighton
,
T.
Sato
,
M. D. J.
Sayer
,
M.
Suzumura
,
K.
Tait
,
M. E.
Vardy
,
P. R.
White
, and
S.
Widdicombe
, “
Detection and impacts of leakage from sub-seafloor deep geological carbon dioxide storage
,”
Nat. Climate Change
4
(
11
),
1011
(
2014
).
37.
B. J.
Berges
,
T. G.
Leighton
, and
P. R.
White
, “
Passive acoustic quantification of gas fluxes during controlled gas release experiments
,”
Int. J. Greenhouse Gas Control
38
,
64
79
(
2015
).
38.
G.
Qiao
,
X.
Qing
,
W.
Feng
,
S.
Liu
,
D.
Nie
, and
Y.
Zhang
, “
Elastic feature of cylindrical shells extraction in time-frequency domain using biomimetic dolphin click
,”
J. Acoust. Soc. Am.
142
(
6
),
3787
3795
(
2017
).
39.
S.
Yoon
,
L. A.
Crum
,
A.
Prosperetti
, and
N.
Lu
, “
An investigation of the collective oscillations of a bubble cloud
,”
J. Acoust. Soc. Am.
89
(
2
),
700
706
(
1991
).
40.
M.
Nicholas
,
R.
Roy
,
L.
Crum
,
H.
Oguz
, and
A.
Prosperetti
, “
Sound emissions by a laboratory bubble cloud
,”
J. Acoust. Soc. Am.
95
(
6
),
3171
3182
(
1994
).
41.
See supplementary materials at http://dx.doi.org/10.1121/1.5126003 for dynamic display of the sound pressure and particle velocity distribution in 3D.
42.
P. S.
Enger
, “
Hearing in herring
,”
Comp. Biochem. Physiol.
22
(
2
),
527
538
(
1967
).
43.
G.
Rieucau
,
L. D.
Sivle
, and
N.
Olav Handegard
, “
Herring perform stronger collective evasive reactions when previously exposed to killer whales calls
,”
Behav. Ecol.
27
(
2
),
538
544
(
2015
).
44.
N. O.
Handegard
,
A. D.
Robertis
,
G.
Rieucau
,
K.
Boswell
, and
G. J.
Macaulay
, “
The reaction of a captive herring school to playbacks of a noise-reduced and a conventional research vessel
,”
Can. J. Fish. Aquat. Sci.
72
(
4
),
491
499
(
2014
).
45.
S. L.
Nedelec
,
J.
Campbell
,
A. N.
Radford
,
S. D.
Simpson
, and
N. D.
Merchant
, “
Particle motion: The missing link in underwater acoustic ecology
,”
Meth. Ecol. Evol.
7
(
7
),
836
842
(
2016
).
46.
A. N.
Popper
and
A. D.
Hawkins
, “
The importance of particle motion to fishes and invertebrates
,”
J. Acoust. Soc. Am.
143
(
1
),
470
488
(
2018
).
47.
R. W.
Nero
,
C. H.
Thompson
, and
J.
Michael Jech
, “
In situ acoustic estimates of the swimbladder volume of Atlantic herring (Clupea harengus)
,”
ICES J. Marine Sci.
61
(
3
),
323
337
(
2004
).
48.
D. E.
Weston
, “
Sound propagation in the presence of bladder fish
,”
Underwater Acoust.
2
,
55
88
(
1967
).

Supplementary Material

You do not currently have access to this content.