A wide class of three-dimensional sound propagation problems in shallow water where the bathymetry can be locally approximated by a parametric quadratic function is considered. Relevant examples of such bathymetry functions include underwater canyons and ridges. Asymptotic solution for this class of problems is derived under the adiabaticity assumption. The solution is based on mode parabolic equation theory and group-theoretical disentanglement formulas for operator exponentials. Two examples are considered (a ridge and a bottom with quadratic slope), and respective wavefront geometry is studied.

1.
Abawi
,
A. T.
(
2015
). “
Numerically exact three-dimensional propagation
,”
J. Acoust. Soc. Am.
137
(
4
),
2419
2419
.
2.
Abawi
,
A. T.
,
Kuperman
,
W. A.
, and
Collins
,
M. D.
(
1997
). “
The coupled mode parabolic equation
,”
J. Acoust. Soc. Am.
102
(
1
),
233
238
.
3.
Abawi
,
A. T.
, and
Porter
,
M. B.
(
2007
). “
Propagation in an elastic wedge using the virtual source technique
,”
J. Acoust. Soc. Am.
121
(
3
),
1374
1382
.
4.
Ballard
,
M. S.
(
2012
). “
Modeling three-dimensional propagation in a continental shelf environment
,”
J. Acoust. Soc. Am.
131
(
3
),
1969
1977
.
5.
Burridge
,
R.
, and
Weinberg
,
H.
(
1977
). “
Horizontal rays and vertical modes
,” in
Wave Propagation and Underwater Acoustics
(
Springer
,
New York
), pp.
86
152
.
6.
Calazan
,
R. M.
, and
Rodríguez
,
O. C.
(
2017
). “
TRACEO3D ray tracing model for underwater noise predictions
,” in
Doctoral Conference on Computing, Electrical and Industrial Systems
(
Springer
,
New York
), pp.
183
190
.
7.
Collins
,
M. D.
(
1993
). “
The adiabatic mode parabolic equation
,”
J. Acoust. Soc. Am.
94
(
4
),
2269
2278
.
8.
Deane
,
G.
, and
Buckingham
,
M.
(
1993
). “
An analysis of the three-dimensional sound field in a penetrable wedge with a stratified fluid or elastic basement
,”
J. Acoust. Soc. Am.
93
(
3
),
1319
1328
.
9.
Jensen
,
F. B.
,
Kuperman
,
W. A.
,
Porter
,
M. B.
, and
Schmidt
,
H.
(
2011
).
Computational Ocean Acoustics
(
Springer Science & Business Media
,
New York)
.
10.
Katsnelson
,
B.
,
Petnikov
,
V.
, and
Lynch
,
J.
(
2012
).
Fundamentals of Shallow Water Acoustics
(
Springer Science & Business Media
,
New York)
.
11.
Lin
,
Y.-T.
,
Duda
,
T. F.
, and
Newhall
,
A. E.
(
2013
). “
Three-dimensional sound propagation models using the parabolic-equation approximation and the split-step fourier method
,”
J. Comput. Acoust.
21
(
01
),
1250018
.
12.
Lin
,
Y.-T.
, and
Lynch
,
J. F.
(
2012
). “
Analytical study of the horizontal ducting of sound by an oceanic front over a slope
,”
J. Acoust. Soc. Am.
131
(
1
),
EL1
EL7
.
13.
Petrov
,
P. S.
, and
Petrova
,
T. N.
(
2014
). “
Asymptotic solution for the problem of sound propagation in a sea with an underwater canyon
,”
J. Acoust. Soc. Am.
136
(
4
),
EL281
EL287
.
14.
Petrov
,
P.
,
Sergeev
,
S.
, and
Tolchennikov
,
A.
(
2018
). “
Modeling of pulse signals in 3D propagation problems of deep-water acoustics based on the modified Maslov's canonical operator
,”
Russ. J. Math. Phys.
25
(
1
),
102
112
.
15.
Petrov
,
P. S.
, and
Sturm
,
F.
(
2016
). “
An explicit analytical solution for sound propagation in a three-dimensional penetrable wedge with small apex angle
,”
J. Acoust. Soc. Am.
139
(
3
),
1343
1352
.
16.
Petrov
,
P. S.
,
Trofimov
,
M. Y.
, and
Zakharenko
,
A. D.
(
2012
). “
Mode parabolic equations for the modeling of sound propagation in 3D-varying shallow water waveguides
,” in
Proceedings of the IEEE International Conference Days on Diffraction (DD)
, May 28–June 1, St. Petersburg, Russia (
IEEE
,
New York
), pp.
197
202
.
17.
Pierce
,
A. D.
(
1965
). “
Extension of the method of normal modes to sound propagation in an almost-stratified medium
,”
J. Acoust. Soc. Am.
37
(
1
),
19
27
.
18.
Prants
,
S.
(
1986
). “
An algebraic approach to quadratic parametric processes
,”
J. Phys. A: Math. General
19
(
17
),
3457
3462
.
19.
Siegmann
,
W. L.
,
Kriegsmann
,
G. A.
, and
Lee
,
D.
(
1985
). “
A wide-angle three-dimensional parabolic wave equation
,”
J. Acoust. Soc. Am.
78
(
2
),
659
664
.
20.
Sodha
,
M.
, and
Ghatak
,
A.
(
2013
).
Inhomogeneous Optical Waveguides
(
Springer Science & Business Media
,
New York)
.
21.
Sturm
,
F.
(
2016
). “
Leading-order cross term correction of three-dimensional parabolic equation models
,”
J. Acoust. Soc. Am.
139
(
1
),
263
270
.
22.
Trofimov
,
M. Y.
(
1999
). “
Narrow-angle parabolic equations of adiabatic single-mode propagation in a horizontally inhomogeneous shallow sea
,”
Acoust. Phys.
45
,
575
580
.
23.
Trofimov
,
M. Y.
,
Kozitskiy
,
S.
, and
Zakharenko
,
A.
(
2015
). “
A mode parabolic equation method in the case of the resonant mode interaction
,”
Wave Motion
58
,
42
52
.
24.
Wei
,
J.
, and
Norman
,
E.
(
1963
). “
Lie algebraic solution of linear differential equations
,”
J. Math. Phys.
4
(
4
),
575
581
.
25.
Weston
,
D.
(
1961
). “
Horizontal refraction in a three-dimensional medium of variable stratification
,”
Proc. Phys. Soc.
78
(
1
),
46
52
.
You do not currently have access to this content.