The estuarine salt wedge presents a dynamic and highly refractive waveguide, the acoustic propagation characteristics of which are controlled by the water column sound speed gradient and boundary interactions. Acoustically, the salt wedge consists of two isospeed layers separated by a thin, three-dimensional (3D), high-gradient layer. The behavior of a broadband (500–2000 Hz) acoustic field under the influence of an estuarine salt wedge in the Columbia River estuary is explored using two 3D acoustic propagation models: 3D rays and 3D parabolic equation. These model results are compared to data collected during the field experiment. Results demonstrate that the dominant physical mechanism controlling acoustic propagation in this waveguide shifts from 3D bottom scatter in a non-refractive waveguide (before the entrance of the salt wedge) to 3D acoustic refraction with minimal bottom interaction in a refractive waveguide (when the salt wedge occupies the acoustic transect). Vertical and horizontal refraction in the water column and out-of-plane scattering by the bottom are clearly evident at specific narrowband frequencies; however, these mechanisms contribute to, but do not account for, the total observed broadband transmission loss.

1.
Baptista
,
A. M.
,
Seaton
,
C.
,
Wilkin
,
M.
,
Riseman
,
S.
,
Needoba
,
J. A.
,
Maier
,
D.
,
Turner
,
P. J.
,
Karna
,
T.
,
Lopez
,
J. E.
, and
Herfort
,
L.
(
2015
). “
Infrastructure for collaborative science and societal applications in the Columbia River estuary
,”
Frontiers Earth Sci.
9
(
4
),
659
682
.
2.
Baschek
,
B.
, and
Farmer
,
D. M.
(
2010
). “
Gas bubbles as oceanographic tracers
,”
J. Atm. Oc. Tech.
27
,
241
245
.
3.
Baschek
,
B.
,
Farmer
,
D. M.
, and
Garrett
,
C.
(
2006
). “
Tidal fronts and their role in air-sea gas exchange
,”
J. Mar. Res.
64
(
4
),
483
515
.
4.
Bergman
,
P. G.
(
1946
). “
The wave equation in a medium with a variable index of refraction
,”
J. Acoust. Soc. Am.
17
,
329
333
.
5.
Chen
,
C.-T.
, and
Millero
,
F. J.
(
1977
). “
Speed of sound in seawater at high pressures
,”
J. Acoust. Soc. Am.
62
,
1129
1135
.
6.
Day
,
J. H.
(
1980
). “
What is an estuary?
,”
S. Afr. J. Sci.
76
,
198
.
7.
Day
,
J. H.
(
1981
). “
The nature, origin and classification of estuaries
,” in
Estuarine Ecology: With Particular Reference to Southern Africa
, edited by
J. H.
Day
and
A. A.
Balkema
(
CRC Press
,
Rotterdam
).
8.
Dyer
,
K.
(
1998
).
Estuaries: A Physical Introduction
(
John Wiley & Sons
,
New York
), Chap. 1, pp.
5
25
.
9.
Etter
,
P. C.
(
2003
).
Underwater Acoustic Modeling and Simulation
(
Spon Press
,
London
), Chap. 4.
10.
Feit
,
M. D.
, and
Fleck
,
J. A.
, Jr.
(
1978
). “
Light propagation in graded-index fibers
,”
Appl. Opt.
17
,
3990
3998
.
11.
Gelfenbaum
,
G.
(
1983
). “
Suspended-sediment response to semi-diurnal and fortnightly tidal variations in a mesotidal estuary: Columbia River, USA
,”
Marine Geol.
52
,
39
57
.
12.
Gelfenbaum
,
G.
,
Elias
,
E.
,
Stevens
,
A.
,
MacMahan
,
J.
,
Reniers
,
A.
, and
Sherwood
,
C.
(
2014
). “
Impacts of large-scale morphology and bedforms on inlet dynamics: Mouth of the Columbia River, USA
,” in
Proceedings of the 17th Physics of Estuaries and Coastal Seas (PECS) Conference
, Porto de Galinhas, Pernambuco, Brazil (October 19–24).
13.
Gelfenbaum
,
G.
,
Finlayson
,
D.
,
Dartnell
,
P.
,
Carlson
,
E.
, and
Stevens
,
A.
(
2015
). “
Bathymetry and backscatter from 2013 interferometric swath bathymetry systems
,” Survey of Columbia River Mouth, Oregon and Washington. U.S. Geological Survey data set, (Last viewed 9/3/2019).
14.
Geyer
,
R.
(
2014
). Personal communication.
15.
Hahn
,
T. R.
(
2007
). “
Low frequency sound scattering from spherical assemblages of bubbles using effective medium theory
,”
J. Acoust. Soc. Am.
122
(
6
),
3252
3267
.
16.
Hardin
,
R. H.
, and
Tappert
,
F. D.
(
1973
). “
Applications of the split-step Fourier method to the numerical solution of nonlinear and variable coefficient wave equations
,”
SIAM Rev.
15
,
423
.
17.
Hwang
,
P. A.
, and
Teague
,
W. J.
(
2000
). “
Low-frequency resonant scattering of bubble clouds
,”
J. Atmos. Oceanic Technol.
17
,
847
853
.
18.
Jensen
,
F. B.
,
Kuperman
,
W. A.
,
Porter
,
M. B.
, and
Schmidt
,
H.
(
1994
).
Computational Ocean Acoustics
(
American Institute of Physics
,
New York
).
19.
Karna
,
T.
,
Baptista
,
A. M.
,
Lopez
,
J. E.
,
Turner
,
P. J.
,
McNeil
,
C.
, and
Sanford
,
T. B.
(
2015
). “
Numerical modeling of circulation in high-energy estuaries: A Columbia River estuary benchmark
,”
Ocean Modelling
88
,
54
71
.
20.
Kennish
,
M. J.
(
1986
).
Ecology of Estuaries, Vol. 1, Physical and Chemical Aspects
(
CRC Press, Inc
.,
Boca Raton, FL
),
254
pp.
21.
Lavery
,
A. C.
(
2015
). Personal communication.
22.
Lavery
,
A. C.
,
Jurisa
,
J. T.
, and
Geyer
,
W. R.
(
2018
). “
Spectral quantification of a tidal plume from an autonomous underwater vehicle
,”
J. Acoust. Soc. Am.
143
(
3
),
1729
.
23.
Lin
,
Y.-T.
,
Duda
,
T. F.
, and
Newhall
,
A. E.
(
2013
). “
Three-dimensional sound propagation models using the parabolic-equation approximation and the split-step Fourier method
,”
J. Comp. Acoust.
21
,
1250018
.
24.
Marmorino
,
G. O.
, and
Trump
,
C. L.
(
1996
). “
High-resolution measurements made across a tidal intrusion front
,”
J. Geophys. Res.
101
,
25661
25674
, .
25.
Neal
,
V. T.
(
1972
). “
Physical aspects of the Columbia River and its estuary
,” in
The Columbia River Estuary and Adjacent Ocean Waters
, edited by
A. T.
Pruter
and
D. L.
Alverson
(
University of Washington Press
,
Seattle, WA
), pp.
19
40
.
26.
Porter
,
M. B.
(
2011
). The BELLHOP Manual and User's Guide, http://oalib.hlsresearch.com/Rays/HLS-2010-1.pdf (Last viewed October 22, 2018).
27.
Porter
,
M. B.
, and
Bucker
,
H. P.
(
1987
). “
Gaussian beam tracing for computing ocean acoustic fields
,”
J. Acoust. Soc. Am.
82
(
4
),
1349
1359
.
28.
Pritchard
,
D. W.
(
1967
). “
What is an estuary: Physical viewpoint
,” in
Estuaries
, edited by
G. H.
Lauff
(
American Association for the Advancement of Science
,
Washington
), Publication No. 83, pp.
3
5
.
29.
Reeder
,
D. B.
(
2016
). “
Field observation of low-to-mid-frequency acoustic propagation characteristics of an estuarine salt wedge
,”
J. Acoust. Soc. Am.
139
(
1
),
21
29
.
30.
Reeder
,
D. B.
,
Honegger
,
D.
,
Joseph
,
J.
,
McNeil
,
C.
,
Rago
,
T.
, and
Ralston
,
D.
(
2018
). “
Acoustic propagation at low-to-mid-frequencies in the Connecticut River
,”
Proc. Mtgs. Acoust.
33
,
005001
.
31.
Roy
,
R. A.
,
Carey
,
W.
,
Nicholas
,
M.
,
Schindall
,
J.
, and
Crum
,
L. A.
(
1992
). “
Low frequency scattering from submerged bubble clouds
,”
J. Acoust. Soc. Am.
92
,
2993
2996
.
32.
Sherwood
,
C. R.
, and
Creager
,
J. S.
(
1990
). “
Sedimentary geology of the Columbia River estuary
,”
Progress Ocean.
25
,
15
79
.
33.
Tappert
,
F. D.
(
1974
). “
Parabolic equation method in underwater acoustics
,”
J. Acoust. Soc. Am.
55
,
S34
.
34.
Zhou
,
J.-X.
,
Zhang
,
X.-Z.
, and
Knobles
,
D. P.
(
2009
). “
Low-frequency geoacoustic model for the effective properties of sandy seabottoms
,”
J. Acoust. Soc. Am.
125
(
5
),
2847
2866
.
You do not currently have access to this content.