The three-dimensional Monterey–Miami parabolic equation model is used to simulate a nonlinear internal wave (NIW) crossing the sound field in a shallow water environment. The impetus for this research stems from acoustic measurements taken during the Shallow Water '06 (SW06) field experiment, where a NIW traversed the water column such that soliton wavecrests were nearly parallel to the source–receiver path. Horizontal refraction effects are important in this scenario. A sound speed profile adapted from experimental SW06 data is used to simulate the NIW, assuming variations along the wavecrests (e.g., curvature) are negligible. Broadband and modal energy metrics show acoustic fluctuations due to internal wave activity. Repeated model runs simulate the NIW crossing the parabolic equation (PE) field over space and time. Statistical analysis shows the PE data are best fit by a lognormal distribution but tends to an exponential distribution during certain scenarios. Small angle differences between the acoustic track and the propagating NIW cause substantial differences in energy distribution throughout the PE field. While refraction effects due to the leading edge of the NIW's arrival are important in all cases, the impacts of focusing and defocusing in the perfectly parallel case dominate the field fluctuations. In the non-parallel case, the strong fluctuations introduced by the passage of the NIW are of similar order to the refraction off the leading edge.

1.
A. E.
Newhall
,
T. F.
Duda
,
K.
Von Der Heydt
,
J. D.
Irish
,
J. N.
Kemp
,
S. A.
Lerner
,
S. P.
Liberatore
,
Y. T.
Lin
,
J. F.
Lynch
,
A. R.
Maffei
,
A. K.
Morozov
,
A. A.
Shmelev
,
C. J.
Sellers
, and
W. E.
Witzell
, “
Acoustic and oceanographic observations and configuration information for the WHOI moorings from the SW06 experiment
,”
WHOI technical report No. WHOI-2007-04
(
2007
), available at https://hdl.handle.net/1912/1826.
2.
J.-x.
Zhou
,
X.-z.
Zhang
, and
P. H.
Rogers
, “
Resonant interaction of sound wave with internal solitons in the coastal zone
,”
J. Acoust. Soc. Am.
90
(
4
),
2042
2054
(
1991
).
3.
B. G.
Katsnelson
and
S. A.
Pereselkov
, “
Low-frequency horizontal acoustic refraction caused by internal wave solitons in a shallow sea
,”
Acoust. Phys.
46
(
6
),
684
–691 (
2000
).
4.
S.
Finette
and
R.
Oba
, “
Horizontal array beamforming in an azimuthally anisotropic internal wave field
,”
J. Acoust. Soc. Am.
114
(
1
),
131
144
(
2003
).
5.
M.
Badiey
,
B. G.
Katsnelson
,
J. F.
Lynch
,
S.
Pereselkov
, and
W. L.
Siegmann
, “
Measurement and modeling of three-dimensional sound intensity variations due to shallow-water internal waves
,”
J. Acoust. Soc. Am.
117
(
2
),
613
625
(
2005
).
6.
M.
Badiey
,
Y.
Mu
,
J.
Lynch
,
J.
Apel
, and
S.
Wolf
, “
Temporal and azimuthal dependence of sound propagation in shallow water with internal waves
,”
IEEE J. Ocean. Eng.
27
(
1
),
117
129
(
2002
).
7.
T. F.
Duda
, “
Examining the validity of approximations to fully three-dimensional shallow-water acoustic propagation through nonlinear internal gravity waves
,” in
OCEANS 2007-Europe
, pp.
1
5
(
2007
).
8.
S.
Finette
,
M. H.
Orr
,
A.
Turgut
,
J. R.
Apel
,
M.
Badiey
,
C.-s.
Chiu
,
R. H.
Headrick
,
J. N.
Kemp
,
J. F.
Lynch
,
A. E.
Newhall
,
K. v.
Heydt
,
B.
Pasewark
,
S. N.
Wolf
, and
D.
Tielbuerger
, “
Acoustic field variability induced by time evolving internal wave fields
,”
J. Acoust. Soc. Am.
108
(
3
),
957
972
(
2000
).
9.
S. D.
Frank
,
M.
Badiey
,
J. F.
Lynch
, and
W. L.
Siegmann
, “
Analysis and modeling of broadband airgun data influenced by nonlinear internal waves
,”
J. Acoust. Soc. Am.
116
(
6
),
3404
3422
(
2004
).
10.
S. D.
Frank
,
M.
Badiey
,
J. F.
Lynch
, and
W. L.
Siegmann
, “
Experimental evidence of three-dimensional acoustic propagation caused by nonlinear internal waves
,”
J. Acoust. Soc. Am.
118
(
2
),
723
734
(
2005
).
11.
R.
Oba
and
S.
Finette
, “
Acoustic propagation through anisotropic internal wave fields: Transmission loss, cross-range coherence, and horizontal refraction
,”
J. Acoust. Soc. Am.
111
(
2
),
769
784
(
2002
).
12.
M.
Badiey
,
B. G.
Katsnelson
,
Y. T.
Lin
, and
J. F.
Lynch
, “
Acoustic multipath arrivals in the horizontal plane due to approaching nonlinear internal waves
,”
J. Acoust. Soc. Am.
129
(
4
),
EL141
EL147
(
2011
).
13.
Y.-T.
Lin
,
T. F.
Duda
, and
J. F.
Lynch
, “
Acoustic mode radiation from the termination of a truncated nonlinear internal gravity wave duct in a shallow ocean area
,”
J. Acoust. Soc. Am.
126
(
4
),
1752
1765
(
2009
).
14.
J. F.
Lynch
,
Y. T.
Lin
,
T. F.
Duda
, and
A. E.
Newhall
, “
Acoustic ducting, reflection, refraction, and dispersion by curved nonlinear internal waves in shallow water
,”
IEEE J. Ocean. Eng.
35
(
1
),
12
27
(
2010
).
15.
K. G.
McMahon
,
L. K.
Reilly-Raska
,
W. L.
Siegmann
,
J. F.
Lynch
, and
T. F.
Duda
, “
Horizontal Lloyd mirror patterns from straight and curved nonlinear internal waves
,”
J. Acoust. Soc. Am.
131
(
2
),
1689
1700
(
2012
).
16.
Y. T.
Lin
,
K. G.
McMahon
,
J. F.
Lynch
, and
W. L.
Siegmann
, “
Horizontal ducting of sound by curved nonlinear internal gravity waves in the continental shelf areas
,”
J. Acoust. Soc. Am.
133
(
1
),
37
49
(
2013
).
17.
B. J.
Sperry
,
J. F.
Lynch
,
G.
Gawarkiewicz
,
C.-S.
Chiu
, and
A.
Newhall
, “
Characteristics of acoustic propagation to the eastern vertical line array receiver during the summer 1996 New England shelfbreak PRIMER experiment
,”
IEEE J. Ocean. Eng.
28
(
4
),
729
749
(
2003
).
18.
J. R.
Apel
,
M.
Badiey
,
C.-S.
Chiu
,
S.
Finette
,
R.
Headrick
,
J.
Kemp
,
J. F.
Lynch
,
A.
Newhall
,
M. H.
Orr
,
B. H.
Pasewark
,
D.
Tielbuerger
,
A.
Turgut
,
K.
Von Der Heydt
, and
S.
Wolf
, “
An overview of the 1995 SWARM shallow-water internal wave acoustic scattering experiment
,”
IEEE J. Ocean. Eng.
22
(
3
),
465
500
(
1997
).
19.
R. H.
Headrick
,
J. F.
Lynch
,
J. N.
Kemp
,
A. E.
Newhall
,
K. von der
Heydt
,
J.
Apel
,
M.
Badiey
,
C.-S.
Chiu
,
S.
Finette
,
M.
Orr
,
B.
Pasewark
,
A.
Turgot
,
S.
Wolf
, and
D.
Tielbuerger
, “
Acoustic normal mode fluctuation statistics in the 1995 SWARM internal wave scattering experiment
,”
J. Acoust. Soc. Am.
107
,
201
220
(
2000
).
20.
J. F.
Lynch
,
S. R.
Ramp
,
C.-S.
Chiu
,
T. Y.
Tang
,
Y. J.
Yang
, and
J. A.
Simmen
, “
Research highlights from the Asian Seas International Acoustics Experiment in the South China Sea
,”
IEEE J. Ocean. Eng.
29
(
4
),
1067
1074
(
2004
).
21.
P. H.
Dahl
,
R.
Zhang
,
J. H.
Miller
,
L. R.
Bartek
,
Z.
Peng
,
S. R.
Ramp
,
J. X.
Zhou
,
C. S.
Chiu
,
J. F.
Lynch
,
J. A.
Simmen
, and
R. C.
Spindel
, “
Overview of results from the Asian seas international acoustics experiment in the east china sea
,”
IEEE J. Ocean. Eng.
29
(
4
),
920
928
(
2005
).
22.
M.
Badiey
,
B. G.
Katsnelson
,
J. F.
Lynch
, and
S.
Pereselkov
, “
Frequency dependence and intensity fluctuations due to shallow water internal waves
,”
J. Acoust. Soc. Am.
122
(
2
),
747
760
(
2007
).
23.
J.
Luo
,
M.
Badiey
,
E. A.
Karjadi
,
B.
Katsnelson
,
A.
Tskhoidze
,
J. F.
Lynch
, and
J. N.
Moum
, “
Observation of sound focusing and defocusing due to propagating nonlinear internal waves
,”
J. Acoust. Soc. Am.
124
(
3
),
66
(
2008
).
24.
J. F.
Lynch
,
J. A.
Colosi
,
G. G.
Gawarkiewicz
,
T. F.
Duda
,
A. D.
Pierce
,
M.
Badiey
,
B. G.
Katsnelson
,
J. E.
Miller
,
W.
Siegmann
,
C.-S.
Chiu
, and
A.
Newhall
, “
Consideration of fine-scale coastal oceanography and 3-D acoustics effects for the ESME sound exposure model
,”
IEEE J. Ocean. Eng.
31
(
1
),
33
48
(
2006
).
25.
K. B.
Smith
and
J. A.
Colosi
, “
Effects of solitons on acoustic energy flow in three dimensions
,”
J. Acoust Soc. Am.
132
,
3942
(
2008
).
26.
T. F.
Duda
,
J. F.
Lynch
,
A. E.
Newhall
,
L.
Wu
, and
C.-S.
Chiu
, “
Fluctuation of 400-Hz sound intensity in the 2001 ASIAEX South China Sea experiment
,”
IEEE J. Ocean. Eng.
29
(
4
),
1264
1279
(
2004
).
27.
A.
Fredricks
,
J. A.
Colosi
,
J. F.
Lynch
,
G.
Gawarkiewicz
,
C.-S.
Chiu
, and
P.
Abbot
, “
Analysis of multipath scintillations from long range acoustic transmissions on the New England continental slope and shelf
,”
J. Acoust. Soc. Am.
117
(
3
),
1038
1057
(
2005
).
28.
S. E.
Crocker
,
J. H.
Miller
,
G. R.
Potty
, and
J. F.
Lynch
, “
Nonlinear optimization for beamforming a geometrically deficient vertical line array: Application to sediment tomography
,”
J. Acoust. Soc. Am.
120
(
5
),
3063
3063
(
2006
).
29.
K. B.
Smith
, “
Convergence, stability, and variability of shallow water acoustic predictions using a split-step Fourier parabolic equation model
,”
J. Comput. Acoust.
9
(
1
),
243
(
2001
).
30.
K. B.
Smith
and
F. D.
Tappert
, “
Horizontal refraction and the uncoupled azimuth approximation
,”
Theor. Comput. Acoust.
2003
,
343
354
(
2004
).
31.
D. J.
Thomson
and
C. S.
Bohun
, “
A wide-angle initial field for the parabolic equation models
,”
J. Acoust. Soc. Am
83
,
S118
(
1988
).
32.
Y.-M.
Jiang
,
N. R.
Chapman
, and
M.
Badiey
, “
Quantifying the uncertainty of geoacoustic parameter estimates for the New Jersey shelf by inverting air gun data
,”
J. Acoust. Soc. Am.
121
(
4
),
1879
1894
(
2007
).
33.
G. R.
Potty
,
J. H.
Miller
,
P. S.
Wilson
,
J. F.
Lynch
, and
A.
Newhall
, “
Geoacoustic inversion using combustive sound source signals
,”
J. Acoust. Soc. Am.
124
(
3
),
E146
(
2008
).
34.
Z. Y.
Zhang
and
C. T.
Tindle
, “
Improved equivalent fluid approximations for a low shear speed ocean bottom
,”
J. Acoust. Soc. Am.
98
(
6
),
3391
3396
(
1995
).
35.
M. B.
Porter
, “
The KRAKEN normal mode program
,” Technical report, SACLANT Undersea Research Center (
1992
).
36.
R. H.
Ferris
, “
Comparison of measured and calculated normal-mode amplitude functions for acoustic waves in shallow water
,”
J. Acoust. Soc. Am.
52
(
3B
),
981
989
(
1972
).
37.
A. R.
Smith
and
K. B.
Smith
, “
Mode functions for the wide-angle approximation to the parabolic equation
,”
J. Acoust. Soc. Am.
103
(
2
),
814
821
(
1998
).
38.
G. A.
Dossot
, “
Acoustic fluctuations in shallow water due to nonlinear internal waves
,” Ph.D. dissertation, Ocean Engineering, University of Rhode Island,
2011
.
39.
J. A.
Colosi
, “
Acoustic mode coupling induced by shallow water nonlinear internal waves: Sensitivity to environmental conditions and space–time scales of internal waves
,”
J. Acoust. Soc. Am.
124
(
3
),
1452
1464
(
2008
).
40.
T. F.
Duda
, “
Acoustic mode coupling by nonlinear internal wave packets in a shelfbreak front area
,”
IEEE J. Ocean. Eng.
29
(
1
),
118
125
(
2004
).
41.
X.
Tang
,
F. D.
Tappert
, and
D. B.
Creamer
, “
Simulations of large acoustic scintillations in the Straits of Florida
,”
J. Acoust. Soc. Am.
120
(
6
),
3539
3552
(
2006
).
42.
J. A.
Colosi
and
A. B.
Baggeroer
, “
On the kinematics of broadband multipath scintillation and the approach to saturation
,”
J. Acoust. Soc. Am.
116
(
6
),
3515
3522
(
2004
).
You do not currently have access to this content.