Two scale-model acoustic propagation experiments were conducted in a laboratory tank to investigate three-dimensional (3D) propagation effects induced by range-dependent bathymetry. The model bathymetry, patterned after measured bathymetric data, represents a portion of the Hudson Canyon at 1:7500 scale. The bottom condition in the scale model is nearly pressure release, and as a result, the bottom reflection and backscattering are stronger than that of the real ocean environment. Measurements are presented for propagation paths oriented along and across the axis of the canyon. The measured data are interpreted using both 3D adiabatic-mode and 3D ray models. For propagation along the canyon axis, horizontal focusing is observed, and the out-of-plane arrivals are identified using the vertical mode/horizontal ray analogy to determine which wall or walls of the canyon refracted the sound. For the across-canyon propagation, out-of-plane arrivals are observed for both forward scattered and backward scattered sound. Using the 3D ray model, an investigation of the horizontal and vertical launch angles is used to identify features on the canyon walls responsible for the measured out-of-plane propagation. For both the along- and across-canyon experiments, the 3D ray model produced a solution that was more accurate and less computationally intensive.

1.
D. B.
Reeder
,
L. Y. S.
Chiu
, and
C.
Chen
, “
Experimental evidence of horizontal refraction by nonlinear internal waves of elevation in shallow water in the south China Sea: 3D versus NX2D acoustic propagation modeling
,”
J. Comp. Acoust.
18
,
267
278
(
2010
).
2.
J. F.
Lynch
,
Y.-T.
Lin
,
T. F.
Duda
, and
A. E.
Newhall
, “
Acoustic ducting, reflection, refraction, and dispersion by curved nonlinear internal waves in shallow water
,”
IEEE J. Ocean. Eng.
35
,
12
27
(
2010
).
3.
M.
Badiey
,
B. G.
Katsnelson
,
J. F.
Lynch
,
S.
Pereselkov
, and
W. L.
Siegmann
, “
Measurement and modeling of three-dimensional sound intensity variations due to shallow-water internal waves
,”
J. Acoust. Soc. Am.
117
,
613
625
(
2005
).
4.
R.
Doolittle
,
A.
Tolstoy
, and
M. J.
Buckingham
, “
Experimental confirmation of horizontal refraction from a point source in a wedge-shaped ocean
,”
J. Acoust. Soc. Am.
83
,
2117
2125
(
1988
).
5.
K. D.
Heaney
,
W. A.
Kuperman
, and
B. E.
McDonald
, “
Perth-Burmuda sound propagation (1960): Adiabatic mode intepretation
,”
J. Acoust. Soc. Am.
90
,
2586
2594
(
1991
).
6.
K. D.
Heaney
and
J. J.
Murray
, “
Measurement of three-dimensional propagation in a continental shelf environment
,”
J. Acoust. Soc. Am.
125
,
1394
1402
(
2009
).
7.
M. S.
Ballard
, “
Modeling three-dimensional propagation in a continental shelf environment
,”
J. Acoust. Soc. Am.
131
,
1969
1977
(
2012
).
8.
J. D.
Sagers
,
M. S.
Ballard
, and
D. P.
Knobles
, “
Evidence of three-dimensional acoustic propagation in the Catoche Tongue
,”
J. Acoust. Soc. Am.
136
,
2453
2462
(
2014
).
9.
F.
Sturm
and
A.
Korakas
, “
Comparisons of laboratory scale measurements of three-dimensional acoustic propagation with solutions by a parabolic equation model
,”
J. Acoust. Soc. Am.
133
,
108
118
(
2013
).
10.
P. S.
Petrov
and
T. N.
Petrova
, “
Asymptotic solution for the problem of sound propagation in a sea with an underwater canyon
,”
J. Acoust. Soc. Am.
136
,
EL281
EL287
(
2014
).
11.
J. I.
Arvelo
and
A. P.
Rosenberg
, “
Three-dimensional effects on sound propagation and matched-field processor performance
,”
J. Comp. Acoust.
9
,
17
39
(
2001
).
12.
F.
Sturm
, “
Numerical study of broadband sound pulse propagation in three-dimensional oceanic waveguides
,”
J. Acoust. Soc. Am.
117
,
1058
1079
(
2005
).
13.
T. F.
Duda
,
Y.-T.
Lin
,
A. E.
Newhall
,
W. G.
Zhang
, and
J. F.
Lynch
, “
Computational studies of time-varying three-dimensional acoustic propagation in canyon and slope regions
,”
Proc. IEEE Oceans
2010
,
1
6
(
2010
).
14.
Y. T.
Lin
,
T. F.
Duda
,
C.
Emerson
,
G.
Gawarkiewicz
,
A. E.
Newhall
,
B.
Calder
,
J. F.
Lynch
,
P.
Abbot
,
Y. J.
Yang
, and
S.
Jan
, “
Experimental and numerical studies of sound propagation over a submarine canyon northeast of Taiwan
,”
IEEE J. Ocean. Eng.
40
,
237
249
(
2015
).
15.
L. Y. S.
Chiu
,
Y.-T.
Lin
,
C.-F.
Chen
,
T. F.
Duda
, and
B.
Calder
, “
Focused sound from three-dimensional sound propagation effects over a submarine canyon
,”
J. Acoust. Soc. Am.
129
,
EL260
EL266
(
2011
).
16.
A.
Tolstoy
,
K.
Smith
, and
N.
Maltsev
, “
The SWAM'99 Workshop—An Overview
,”
J. Comp. Acoust.
9
,
1
16
(
2001
).
17.
J. D.
Sagers
, “
Three-dimensional acoustic propagation over a translationally invariant wedge and a scale-model canyon
,” in
Underwater Acoustics Conference and Exhibition
, Crete, Greece (
2015
).
18.
A. T.
Abawi
,
W. A.
Kuperman
, and
M.
Collins
, “
The coupled mode parabolic equation
,”
J. Acoust. Soc. Am.
102
,
233
238
(
1997
).
19.
M. S.
Ballard
,
B. M.
Goldsberry
, and
M. J.
Isakson
, “
Normal mode analysis of three-dimensional propagation over a small-slope cosine shaped hill
,”
J. Comput. Acoust.
23
,
1
19
(
2015
).
20.
M.
Trofimov
,
S.
Kozitskiy
, and
A.
Zakharenko
, “
A mode parabolic equation method in the case of the resonant mode interaction
,”
Wave Motion
58
,
42
52
(
2015
).
21.
J. D.
Sagers
,
M. R.
Haberman
, and
P. S.
Wilson
, “
Ultrasonic measurements of the reflection coefficient at a water/polyurethane foam interface
,”
J. Acoust. Soc. Am.
134
,
EL271
EL274
(
2013
).
22.
H.
Weinberg
and
R.
Burridge
, “
Horizontal ray theory for ocean acoustics
,”
J. Acoust. Soc. Am.
55
,
63
79
(
1974
).
23.
A.
Shmelev
, “
Three-dimensional acoustic propagation through shallow water internal, surface gravity and bottom sediment waves
,” Ph.D. thesis,
Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution
, Woods Hole, MA (
2011
).
24.
J. D.
Sagers
and
M. S.
Ballard
, “
Testing and verification of a scale-model acoustic propagation system
,”
J. Acoust. Soc. Am.
138
,
3576
3585
(
2015
).
25.
M. B.
Porter
, “
The bellhop manual and users guide
,” Technical Report, Heat, Light, and Sound Research, Inc., La Jolla, CA, USA (
2011
), http://oalib.hlsresearch.com/Rays/HLS-2010-1.pdf (Last viewed 29 August 2019).
26.
M. D.
Collins
, “
Generalization of the split-step Pade solution
,”
J. Acoust. Soc. Am.
96
,
382
385
(
1994
).
27.
F. B.
Jensen
,
W. A.
Kuperman
,
M. B.
Porter
, and
H.
Schmidt
,
Computational Ocean Acoustics
, 2nd ed. (
Springer
,
New York
,
2011
).
28.
B. G.
Katsnelson
and
V. G.
Petnikov
,
Shallow-Water Acoustics
(
Springer
,
Chichester, UK
,
2002
).
You do not currently have access to this content.