Changepoint analysis (also known as segmentation analysis) aims to analyze an ordered, one-dimensional vector in order to find locations where some characteristic of the data changes. Many models and algorithms have been studied under this theme, including models for changes in mean and/or variance, changes in linear regression parameters, etc. This work is interested in an algorithm for the segmentation of long duration acoustic signals; the segmentation is based on the change of the root-mean-square power of the signal. It investigates a Bayesian model with two possible parameterizations and proposes a binary algorithm in two versions using non-informative or informative priors. These algorithms are tested in the segmentation of annotated acoustic signals from the Alcatrazes marine preservation park in Brazil.

1.
R.
Makowsky
and
R.
Hossa
, “
Automatic speech signal segmentation based on the innovation adaptive filter
,”
Int. J. Appl. Math. Comput. Sci.
24
(
2
),
259
270
(
2014
).
2.
A.
Ukil
and
R.
Zivanovic
, “
Automatic signal segmentation based on abrupt change detection for power systems applications
,” in
Proceedings of the 2006 IEEE Power India Conference
,
New Delhi, India
(
April 10–12
,
2006
), pp.
59
66
.
3.
A.
Schwartzman
,
Y.
Gavrilov
, and
R. J.
Adler
, “
Multiple testing of local maxima for detection of peaks in 1D
,”
Ann. Stat.
39
(
6
),
3290
3319
(
2011
).
4.
S.
Kuntamalla
and
L. R. G.
Reddy
, “
An efficient and automatic systolic peak detection algorithm for photoplethysmographic signals
,”
Int. J. Comput. Appl.
97
(19),
18
23
(
2014
).
5.
T.
Thedorou
,
I.
Mporas
, and
N.
Fakotakis
, “
An overview of automatic audio segmentation
,”
Int. J. Inf. Technol. Comput. Sci.
11
,
1
9
(
2014
).
6.
M.
Caldas-Morgan
,
A.
Alvarez-Rosario
, and
L. R.
Padovese
, “
An autonomous underwater recorder based on a single board computer
,”
PLos One
10
,
1
18
(
2015
).
7.
B.
Jackson
,
J. D.
Scargle
,
D.
Barnes
,
S.
Arabhi
,
A.
Alt
,
P.
Gioumousis
,
E.
Gwin
,
P.
Sangtrakulchareon
,
L.
Tan
, and
T. T.
Tsai
, “
An algorithm for optimal partioning of data on an interval
,”
IEEE Signal Process. Lett.
12
(
2
),
105
(
2005
).
8.
R.
Killick
,
P.
Fearnhead
, and
I. A.
Eckley
, “
Optimal detection of changepoints with a linear computational cost
,”
J. Am. Stat. Assoc.
107
(
500
),
1590
1598
(
2012
).
9.
M.
Basseville
and
I. V.
Nikiforov
,
Detection of Abrupt Changes: Theory and Application
(
Prentice-Hall, Inc.
,
Upper Saddle River, NJ
,
1993
), p.
469
.
10.
E. T.
Jaynes
, “
Prior probabilities
,”
IEEE Trans. Syst. Sci. Cybernet.
4
(
3
),
227
241
(
1968
).
11.
H.
Jeffreys
, “
An invariant form for the prior probability in estimation problems
,”
Proc. R. Soc. Lond. A
186
(
1007
),
453
461
(
1946
).
12.
P.
Hubert
, “Um sistema para segmentao e caracterizao no-supervisionada de eventos em sinais acsticos” (“A system for the unsupervised segmentation and characterization of events in acoustic signals”)
, Ph.D. thesis,
University of São Paulo
,
Brazil
,
2018
.
13.
J. M.
Dickey
and
B. P.
Lientz
, “
The weighted likelihood ratio, sharp hypotheses about chances, the order of a Markov chain
,”
Ann. Math. Stat.
41
(
1
),
214
226
(
1970
).
14.
C. A. B.
Pereira
and
J. M.
Stern
, “
Evidence and credibility: Full Bayesian significance test for precise hypotheses
,”
Entropy
1
,
99
110
(
1999
).
15.
M. R.
Madruga
and
S. W. L. G.
Esteves
, “
On the Bayesianity of Pereira-stern tests
,”
Test
10
(
2
),
291
299
(
2001
).
16.
P.
Hubert
,
M.
Lauretto
, and
J. M.
Stern
, “
FBST for the generalized Poisson distribution
,”
AIP Conf. Proc.
1193
,
210
(
2009
).
17.
M.
Diniz
,
C. A. B.
Pereira
, and
J. M.
Stern
, “
Unit roots: Bayesian significance test
,”
Commun. Stat. Theory Methods
40
(
23
),
4200
4213
(
2012
).
18.
D.
Chakrabarty
, “
A new Bayesian test to test for the intractability-countering hypothesis
,”
J. Am. Stat. Assoc.
112
(
518
),
561
577
(
2017
).
19.
P.
Hubert
,
L.
Padovese
, and
J. M.
Stern
, “
Full Bayesian approach for signal detection with an application to boat detection on underwater soundscape data
,” in
Proceedings of the 37th Maximum Entropy Methods in Science and Engineering
,
Jarinu, Brazil
(
July 9–14
,
2017
), pp.
199
209
.
20.
H.
Haario
,
E.
Saksman
, and
J.
Tamminen
, “
An adaptive metropolis algorithm
,”
Bernoulli
7
,
223
(
2001
).
21.
J. M.
Stern
, “
Cognitive constructivism and the epistemic significance of sharp hypothesis
,”
Cybernet. Human Know.
14
,
9
36
(
2007
).
22.
L.
Pericchi
and
C. A. B.
Pereira
, “
Adaptative significance levels using optimal decision rules: Balancing the error probabilities
,”
Brazilian J. Prob. Stat.
30
(
1
),
70
90
(
2016
).
23.
C. A. B.
Pereira
,
E. Y.
Nakano
,
V.
Fossaluza
,
L. G.
Esteves
,
M. A.
Gannon
, and
A.
Polpo
, “
Hypothesis tests for binomial experiments: Ordering the sample space by Bayes factors and using adaptive significance levels for decisions
,”
Entropy
19
(
12
),
696
(
2017
).
24.
P.
Hubert
,
L.
Padovese
, and
J. M.
Stern
, “
A sequential algorithm for signal segmentation
,”
Entropy
20
(
1
),
55
(
2018
).
25.
N. R.
Zhang
and
D. O.
Siegmund
, “
A modified Bayes information criterion with applications to the analysis of comparative genomic hybridization data
,”
Biometrics
63
,
22
32
(
2007
).
26.
R.
Killick
and
I. A.
Eckley
, “
Changepoint: An R package for changepoint analysis
,”
J. Stat. Softw.
58
(
3
),
1
19
(
2014
).
27.
A. J.
Scott
and
M.
Knott
, “
A cluster analysis method for grouping means in the analysis of variance
,”
Biometrics
30
(
3
),
507
512
(
1974
).
28.
I.
Sanchez-Gendriz
and
L.
Padovese
, “
A methodology for analyzing biological choruses from long-term passive acoustic monitoring in natural areas
,”
Ecol. Inf.
41
,
1
10
(
2017
).
You do not currently have access to this content.