Limited abilities to localize sound sources and other reduced spatial hearing capabilities remain a largely unsolved issue in hearing devices like hearing aids or hear-through headphones. Hence, the impact of the microphone location, signal bandwidth, different equalization approaches, as well as processing delays in superposition with direct sound leaking through a vent was addressed in this study. A localization experiment was performed with normal-hearing subjects using individual binaural synthesis to separately assess the above-mentioned potential limiting issues for localization in the horizontal and vertical plane with linear hearing devices. To this end, listening through hearing devices was simulated utilizing transfer functions for six different microphone locations, measured both individually and on a dummy head. Results show that the microphone location is the governing factor for localization abilities with linear hearing devices, and non-optimal microphone locations have a disruptive influence on localization in the vertical domain, and an effect on lateral sound localization. Processing delays cause additional detrimental effects for lateral sound localization; and diffuse-field equalization to the open-ear response leads to better localization performance than free-field equalization. Stimuli derived from dummy head measurements are unsuited for evaluating individual localization abilities with a hearing device.

1.
Akeroyd
,
M. A.
, and
Whitmer
,
W. M.
(
2016
). “
Spatial hearing and hearing aids
,” in
Hearing Aids
, edited by
G. R.
Popelka
,
B. C. J.
Moore
,
R. R.
Fay
, and
A. N.
Popper
(
Springer International Publishing
,
Cham, Switzerland
), pp.
181
215
.
2.
Baumgartner
,
R.
,
Majdak
,
P.
, and
Laback
,
B.
(
2013
). “
Assessment of sagittal-plane sound localization performance in spatial-audio applications
,” in
The Technology of Binaural Listening, Modern Acoustics and Signal Processing
, edited by
J.
Blauert
(
Springer
,
Berlin-Heidelberg
), pp.
93
119
.
3.
Best
,
V.
,
Kalluri
,
S.
,
McLachlan
,
S.
,
Valentine
,
S.
,
Edwards
,
B.
, and
Carlile
,
S.
(
2010
). “
A comparison of CIC and BTE hearing aids for three-dimensional localization of speech
,”
Int. J. Audiol.
49
,
723
732
.
4.
Blauert
,
J.
(
1997
).
Spatial Hearing: The Psychophysics of Human Sound Localization
(
MIT Press
,
Cambridge, MA
), p.
510
.
5.
Breebart
,
J.
, and
Kohlrausch
,
A.
(
2001
). “
Perceptual (ir)relevance of HRTF magnitude and phase spectra
,”
Audio Eng. Soc. Conv.
110
,
1
9
.
6.
Brown
,
A. D.
,
Stecker
,
G. C.
, and
Tollin
,
D. J.
(
2015
). “
The precedence effect in sound localization
,”
J. Assoc. Res. Otolaryngol.
16
,
1
28
.
7.
Brungart
,
D. S.
,
Hobbs
,
B. W.
, and
Hamil
,
J. T.
(
2007
). “
A comparsion of acoustic and psychoacoustic measurements of pass-through hearing protection devices
,” in
Proceedings of the 2007 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics
,
October 21–24
,
New Paltz, New York
, pp.
70
73
.
8.
Brungart
,
D. S.
,
Kordik
,
A. J.
,
Eades
,
C. S.
, and
Simpson
,
B. D.
(
2003
). “
The effect of microphone placement on localization accuracy with electronic pass-through earplugs
,” in
Proceedings of the 2003 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics
,
October 21–24
,
New Paltz, New York
, pp.
149
152
.
9.
Byrne
,
D.
, and
Noble
,
W.
(
1998
). “
Optimizing sound localization with hearing aids
,”
Trends Amplif.
3
,
51
73
.
10.
Carlile
,
S.
,
Leong
,
P.
, and
Hyams
,
S.
(
1997
). “
The nature and distribution of errors in sound localization by human listeners
,”
Hear. Res.
114
,
179
196
.
11.
Cubick
,
J.
,
Buchholz
,
J. M.
,
Best
,
V.
,
Lavandier
,
M.
, and
Dau
,
T.
(
2018
). “
Listening through hearing aids affects spatial perception and speech intelligibility in normal-hearing listeners
,”
J. Acoust. Soc. Am.
144
,
2896
2905
.
12.
D'Angelo
,
W. R.
,
Bolia
,
R. S.
,
Mishler
,
P. J.
, and
Morris
,
L. J.
(
2001
). “
Effects of CIC hearing aids on auditory localization by listeners with normal hearing
,”
J. Speech Lang. Hear. Res.
44
,
1209
1214
.
13.
Denk
,
F.
,
Ernst
,
S. M. A.
,
Ewert
,
S. D.
, and
Kollmeier
,
B.
(
2018a
). “
Adapting hearing devices to the individual ear acoustics: Database and target response correction functions for various device styles
,”
Trends Hear.
22
,
2331216518779313
.
14.
Denk
,
F.
,
Ewert
,
S. D.
, and
Kollmeier
,
B.
(
2018b
). “
Spectral directional cues captured by hearing device microphones in individual human ears
,”
J. Acoust. Soc. Am.
144
,
2072
2087
.
15.
Denk
,
F.
,
Kollmeier
,
B.
, and
Ewert
,
S.
(
2018c
). “
Removing reflections in semianechoic impulse responses by frequency-dependent truncation
,”
J. Audio Eng. Soc.
66
,
146
153
.
16.
Denk
,
F.
,
Schepker
,
H.
,
Doclo
,
S.
, and
Kollmeier
,
B.
(
2018d
). “
Equalization filter design for achieving acoustic transparency in a semi-open fit hearing device
,” in
Proceedings of 13 ITG Conference on Speech Communication
,
October 10–12
,
Oldenburg, Germany
, pp.
226
230
.
17.
Doclo
,
S.
,
Kellermann
,
W.
,
Makino
,
S.
, and
Nordholm
,
S. E.
(
2015
). “
Multichannel signal enhancement algorithms for assisted listening devices: Exploiting spatial diversity using multiple microphones
,”
IEEE Signal Process. Mag.
32
,
18
30
.
18.
Durin
,
V.
,
Carlile
,
S.
,
Guillon
,
P.
,
Best
,
V.
, and
Kalluri
,
S.
(
2014
). “
Acoustic analysis of the directional information captured by five different hearing aid styles
,”
J. Acoust. Soc. Am.
136
,
818
828
.
19.
Groth
,
J.
, and
Søndergaard
,
M. B.
(
2004
). “
Disturbance caused by varying propagation delay in non-occluding hearing aid fittings
,”
Int. J. Audiol.
43
,
594
599
.
20.
Härmä
,
A.
,
Jakka
,
J.
,
Tikander
,
M.
,
Karjalainen
,
M.
,
Lokki
,
T.
,
Hiipakka
,
J.
, and
Lorho
,
G.
(
2004
). “
Augmented reality audio for mobile and wearable appliances
,”
J. Audio Eng. Soc.
52
,
618
639
.
21.
Hoffmann
,
P.
,
Møller
,
A. K.
,
Christensen
,
F.
, and
Hammershøi
,
D.
(
2014
). “
Sound localization and speech identification in the frontal median plane with a hear-through headset
,” in
Proceedings of Forum Acusticum
,
September 7–12
,
Krakow, Poland
, pp.
1
6
.
22.
Jensen
,
N. S.
,
Neher
,
T.
,
Laugesen
,
S.
,
Johannesson
,
R. B.
, and
Kragelund
,
L.
(
2013
). “
Laboratory and field study of the potential benefits of pinna cue-preserving hearing aids
,”
Trends Amplif.
17
,
171
188
.
23.
Käsbach
,
J.
,
May
,
T.
,
Oskarsdottir
,
G.
,
Jeong
,
C.-H.
, and
Chang
,
J.
(
2014
). “
The effect of interaural-time-difference fluctuations on apparent source width
,” in
Proceedings of Forum Acusticum
,
September 7–12
,
Krakow, Poland
, pp.
1
5
.
24.
Katz
,
B. F. G.
, and
Noisternig
,
M.
(
2014
). “
A comparative study of interaural time delay estimation methods
,”
J. Acoust. Soc. Am.
135
,
3530
3540
.
25.
Killion
,
M. C.
,
Monroe
,
T.
, and
Drambarean
,
V.
(
2011
). “
Better protection from blasts without sacrificing situational awareness
,”
Int. J. Audiol.
50
,
S38
S45
.
26.
King
,
R. B.
, and
Oldfield
,
S. R.
(
1997
). “
The impact of signal bandwidth on auditory localization: Implications for the design of three-dimensional audio displays
,”
Human Factors
39
,
287
295
.
27.
Kollmeier
,
B.
, and
Kiessling
,
J.
(
2018
). “
Functionality of hearing aids: State-of-the-art and future model-based solutions
,”
Int. J. Audiol.
57
,
S3
S28
.
28.
Macpherson
,
E. A.
, and
Middlebrooks
,
J. C.
(
2002
). “
Listener weighting of cues for lateral angle: The duplex theory of sound localization revisited
,”
J. Acoust. Soc. Am.
111
,
2219
2236
.
29.
Marentakis
,
G.
, and
Liepins
,
R.
(
2014
). “
Evaluation of hear-through sound localization
,” in
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems ACM
,
April 26–May 1
,
Toronto, Canada
, pp.
267
270
.
30.
Middlebrooks
,
J. C.
(
1999
). “
Virtual localization improved by scaling nonindividualized external-ear transfer functions in frequency
,”
J. Acoust. Soc. Am.
106
,
1493
1510
.
31.
Møller
,
H.
(
1992
). “
Fundamentals of binaural technology
,”
Appl. Acoust.
36
,
171
218
.
32.
Møller
,
H.
,
Hammershøi
,
D.
,
Jensen
,
C. B.
, and
Sørensen
,
M. F.
(
1995
). “
Transfer characteristics of headphones measured on human ears
,”
J. Audio Eng. Soc.
43
,
203
217
.
33.
Nishino
,
T.
,
Kajita
,
S.
,
Takeda
,
K.
, and
Itakura
,
F.
(
1999
). “
Interpolating head related transfer functions in the median plane
,” in
Proceedings of the 1999 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics
,
October 20
,
New Paltz, New York
, pp.
167
170
.
34.
Noble
,
W.
,
Byrne
,
D.
, and
Ter-Horst
,
K.
(
1997
). “
Auditory localization, detection of spatial separateness, and speech hearing in noise by hearing impaired listeners
,”
J. Acoust. Soc. Am.
102
,
2343
2352
.
35.
Noble
,
W.
,
Sinclair
,
S.
, and
Byrne
,
D.
(
1998
). “
Improvement in aided sound localization with open earmolds: Observations in people with high-frequency hearing loss
,”
J. Am. Acad. Audiol.
9
,
25
34
.
36.
Schinkel-Bielefeld
,
N.
,
Oreinos
,
C.
, and
Kamkar
,
H. P.
(
2018
). “
Improving localization in binaural beamforming for hearing aid wearers
,” in
Proceedings of the Speech in Noise Workshop 2018
,
January 11–12
,
Glasgow, UK
.
37.
Stone
,
M. A.
,
Moore
,
B. C. J.
,
Meisenbacher
,
K.
, and
Derleth
,
R. P.
(
2008
). “
Tolerable hearing aid delays v estimation of limits for open canal fittings
,”
Ear Hear.
29
,
601
617
.
38.
Tikander
,
M.
(
2009
). “
Usability issues in listening to natural sounds with an augmented reality audio headset
,”
J. Audio Eng. Soc.
57
,
430
441
.
39.
Van den Bogaert
,
T.
,
Carette
,
E.
, and
Wouters
,
J.
(
2011
). “
Sound source localization using hearing aids with microphones placed behind-the-ear, in-the-canal, and in-the-pinna
,”
Int. J. Audiol.
50
,
164
176
.
40.
Van den Bogaert
,
T.
,
Klasen
,
T. J.
,
Moonen
,
M.
,
Van Deun
,
L.
, and
Wouters
,
J.
(
2006
). “
Horizontal localization with bilateral hearing aids: Without is better than with
,”
J. Acoust. Soc. Am.
119
,
515
526
.
41.
Wightman
,
F. L.
, and
Kistler
,
D. J.
(
1992
). “
The dominant role of low-frequency interaural time differences in sound localization
,”
J. Acoust. Soc. Am.
91
,
1648
1661
.
You do not currently have access to this content.