The van Cittert-Zernike (VCZ) theorem describes the propagation of spatial covariance from an incoherent source distribution, such as backscatter from stochastic targets in pulse-echo imaging. These stochastic targets are typically assumed statistically stationary and spatially incoherent with uniform scattering strength. In this work, the VCZ theorem is applied to a piecewise-stationary scattering model. Under this framework, the spatial covariance of the received echo data is demonstrated as the linear superposition of covariances from distinct spatial regions. This theory is analytically derived from fundamental physical principles, and validated through simulation studies demonstrating superposition and scaling. Simulations show that linearity is preserved over various depths and transmit apodizations, and in the presence of noise. These results provide a general framework to decompose spatial covariance into contributions from distinct regions of interest, which may be applied to advanced imaging methods. While the simulation tools used for validation are specific to ultrasound, this analysis is generally applicable to other coherent imaging applications involving stochastic targets. This covariance decomposition provides the physical basis for a recently described imaging method, Multi-covariate Imaging of Sub-resolution Targets.

1.
A.
Papoulis
and
S. U.
Pillai
,
Probability, Random Variables, and Stochastic Processes
(
Tata McGraw-Hill Education
,
New York
,
2002
).
2.
J. W.
Goodman
, “
Statistical properties of laser speckle patterns
,” in
Laser Speckle and Related Phenomena
(
Springer
,
Berlin
,
1975
), pp.
9
75
.
3.
R. F.
Wagner
,
S. W.
Smith
,
J. M.
Sandrik
, and
H.
Lopez
, “
Statistics of speckle in ultrasound b-scans
,”
IEEE Trans. Son. Ultrason.
30
(
3
),
156
163
(
1983
).
4.
J. W.
Goodman
,
Statistical Optics
(
Wiley
,
New York
,
2015
).
5.
J. W.
Goodman
, “
Role of coherence concepts in the study of speckle
,”
Proc. SPIE
194
,
86
94
(
1979
).
6.
P.
Beckmann
and
A.
Spizzichino
,
The Scattering of Electromagnetic Waves from Rough Surfaces
(
Pergamon Press
,
New York
,
1963
).
7.
R. F.
Wagner
,
M. F.
Insana
, and
D. G.
Brown
, “
Unified approach to the detection and classification of speckle texture in diagnostic ultrasound
,”
Opt. Eng.
25
(
6
),
738
742
(
1986
).
8.
M. F.
Insana
,
R. F.
Wagner
,
B. S.
Garra
,
D. G.
Brown
, and
T. H.
Shawker
, “
Analysis of ultrasound image texture via generalized Rician statistics
,”
Opt. Eng.
25
(
6
),
743
748
(
1986
).
9.
J.
Dainty
, “
Some statistical properties of random speckle patterns in coherent and partially coherent illumination
,”
Opt. Acta: Int. J. Opt.
17
(
10
),
761
772
(
1970
).
10.
C. B.
Burckhardt
, “
Speckle in ultrasound b-mode scans
,”
IEEE Trans. Son. Ultrason.
25
(
1
),
1
6
(
1978
).
11.
E.
Verdet
, “
Étude sur la constitution de la lumiere non polarisée et de la lumiere partiellement polarisée” (“Study on the constitution of non polarized and polarized light”)
,
Ann. Sci. Éc. Norm. Supér.
2
,
291
316
(
1865
).
12.
L.
Rayleigh
, “
XII. On the resultant of a large number of vibrations of the same pitch and of arbitrary phase
,”
London Edinburgh Dublin Philos. Mag. J. Sci.
10
(
60
),
73
78
(
1880
).
13.
J. D.
Rigden
and
E. I.
Gordon
, “
The granularity of scattered optical maser light
,”
Proc. I.R.E.
50
,
2367
(
1962
).
14.
B.
Oliver
, “
Sparkling spots and random diffraction
,”
Proc. IEEE
51
(
1
),
220
221
(
1963
).
15.
J. W.
Goodman
, “
Statistical properties of laser sparkle patterns
,” TR-2303-1, Stanford University Electronics Labs (
1963
).
16.
L. I.
Goldfischer
, “
Autocorrelation function and power spectral density of laser-produced speckle patterns
,”
J. Opt. Soc. A
55
(
3
),
247
253
(
1965
).
17.
W.
Martienssen
and
S.
Spiller
, “
Holographic reconstruction without granulation
,”
Phys. Lett. A
24
(
2
),
126
128
(
1967
).
18.
J.
Dainty
, “
The statistics of speckle patterns
,” in
Progress in Optics
(
Elsevier
,
Amsterdam
,
1977
), Vol.
14
, pp.
1
46
.
19.
J. C.
Dainty
, “
An introduction to Gaussian speckle
,”
Proc. SPIE
243
,
2
8
(
1980
).
20.
P.
Van Cittert
, “
Kohaerenz-probleme” (“Coherence problems”)
,
Physica
6
(
7-12
),
1129
1138
(
1939
).
21.
F.
Zernike
, “
Diffraction and optical image formation
,”
Proc. Phys. Soc.
61
(
2
),
158
(
1948
).
22.
L.
Mandel
and
E.
Wolf
,
Optical Coherence and Quantum Optics
(
Cambridge University Press
,
Cambridge
,
1995
).
23.
R.
Mallart
and
M.
Fink
, “
The van Cittert-Zernike theorem in pulse echo measurements
,”
J. Acoust. Soc. Am.
90
(
5
),
2718
2727
(
1991
).
24.
R. F.
Wagner
,
M. F.
Insana
, and
S. W.
Smith
, “
Fundamental correlation lengths of coherent speckle in medical ultrasonic images
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
35
(
1
),
34
44
(
1988
).
25.
R.
Mallart
and
M.
Fink
, “
Adaptive focusing in scattering media through sound-speed inhomogeneities: The van Cittert Zernike approach and focusing criterion
,”
J. Acoust. Soc. Am.
96
(
6
),
3721
3732
(
1994
).
26.
K.
Hollman
,
K.
Rigby
, and
M.
O'Donnell
, “
Coherence factor of speckle from a multi-row probe
,” in
IEEE Ultrasonics Symposium
(
1999
), Vol.
2
, pp.
1257
1260
.
27.
J. C.
Bamber
,
R. A.
Mucci
, and
D. P.
Orofino
, “
Spatial coherence and beamformer gain
,” in
Acoustical Imaging
(
Springer
,
Berlin
,
2002
), pp.
43
48
.
28.
J. C.
Bamber
,
R. A.
Mucci
,
D. P.
Orofino
, and
K.
Thiele
, “
B-mode speckle texture: The effect of spatial coherence
,” in
Acoustical Imaging
(
Springer
,
Berlin
,
2002
), pp.
141
146
.
29.
G. F.
Pinton
,
G. E.
Trahey
, and
J. J.
Dahl
, “
Sources of image degradation in fundamental and harmonic ultrasound imaging using nonlinear, full-wave simulations
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
58
(
4
),
754
765
(
2011
).
30.
G. F.
Pinton
,
G. E.
Trahey
, and
J. J.
Dahl
, “
Spatial coherence in human tissue: Implications for imaging and measurement
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
61
(
12
),
1976
1987
(
2014
).
31.
W.
Long
,
N.
Bottenus
, and
G. E.
Trahey
, “
Lag-one coherence as a metric for ultrasonic image quality
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
65
(
10
),
1768
1780
(
2018
).
32.
G. E.
Trahey
,
S.
Smith
, and
O.
Von Ramm
, “
Speckle pattern correlation with lateral aperture translation: Experimental results and implications for spatial compounding
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
33
(
3
),
257
264
(
1986
).
33.
M.
O'Donnell
and
S. D.
Silverstein
, “
Optimum displacement for compound image generation in medical ultrasound
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
35
(
4
),
470
476
(
1988
).
34.
P.-C.
Li
and
M.-L.
Li
, “
Adaptive imaging using the generalized coherence factor
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
50
(
2
),
128
141
(
2003
).
35.
J.
Camacho
,
M.
Parrilla
, and
C.
Fritsch
, “
Phase coherence imaging
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
56
(
5
),
958
974
(
2009
).
36.
M. A.
Lediju
,
G. E.
Trahey
,
B. C.
Byram
, and
J. J.
Dahl
, “
Short-lag spatial coherence of backscattered echoes: Imaging characteristics
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
58
(
7
),
1377
1388
(
2011
).
37.
G.
Matrone
,
A. S.
Savoia
,
G.
Caliano
, and
G.
Magenes
, “
The delay multiply and sum beamforming algorithm in ultrasound b-mode medical imaging
,”
IEEE Trans. Med. Imag.
34
(
4
),
940
949
(
2015
).
38.
F.
Prieur
,
O. M. H.
Rindal
, and
A.
Austeng
, “
Signal coherence and image amplitude with the filtered delay multiply and sum beamformer
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
65
(
7
),
1133
1140
(
2018
).
39.
M. R.
Morgan
,
G. E.
Trahey
, and
W. F.
Walker
, “
Multi-covariate imaging of sub-resolution targets
,”
IEEE Trans. Med. Imag.
38
(
7
),
1690
1700
(
2019
).
40.
R. J.
Fedewa
,
K. D.
Wallace
,
M. R.
Holland
,
J. R.
Jago
,
G. C.
Ng
,
M. R.
Rielly
,
B. S.
Robinson
, and
J. G.
Miller
, “
Spatial coherence of the nonlinearly generated second harmonic portion of backscatter for a clinical imaging system
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
50
(
8
),
1010
1022
(
2003
).
41.
J. W.
Goodman
,
Introduction to Fourier Optics
(
Roberts and Company
,
Englewood, CO
,
2005
).
42.
W. F.
Walker
and
G. E.
Trahey
, “
Speckle coherence and implications for adaptive imaging
,”
J. Acoust. Soc. Am.
101
(
4
),
1847
1858
(
1997
).
43.
J. A.
Jensen
and
N. B.
Svendsen
, “
Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
39
(
2
),
262
267
(
1992
).
44.
J. A.
Jensen
, “
Field: A program for simulating ultrasound systems
,” in
10th Nordicbaltic Conference on Biomedical Imaging
,
Citeseer
(
1996
), Vol.
4
, Suppl. 1, Part 1, pp.
351
353
.
45.
N. B.
Bottenus
and
G. E.
Trahey
, “
Equivalence of time and aperture domain additive noise in ultrasound coherence
,”
J. Acoust. Soc. Am.
137
(
1
),
132
138
(
2015
).
46.
M. A.
Fink
and
J.-F.
Cardoso
, “
Diffraction effects in pulse-echo measurement
,”
IEEE Trans. Son. Ultrason.
31
(
4
),
313
329
(
1984
).
47.
H.
Van Trees
,
K.
Bell
, and
Z.
Tian
,
Detection Estimation and Modulation Theory, Part I: Detection, Estimation, and Filtering Theory
, Detection Estimation and Modulation Theory (
Wiley
,
New York
,
2013
).
48.
M. A.
Richards
,
Fundamentals of Radar Signal Processing
(
Tata McGraw-Hill Education
,
New York
,
2005
).
49.
A. E. A.
Blomberg
,
C.-I. C.
Nilsen
,
A.
Austeng
, and
R. E.
Hansen
, “
Adaptive sonar imaging using aperture coherence
,”
IEEE J. Ocean. Eng.
38
(
1
),
98
108
(
2013
).
50.
H.
Torp
,
A.
Rodriguez-Molares
, and
L.
Lovstakken
, “
Optimum beamformer strategy for detecting signals in clutter noise
,” in
2015 IEEE International Ultrasonics Symposium (IUS)
, (
IEEE, Piscataway, NJ
,
2015
), pp.
1
4
.
51.
R.
Schmidt
, “
Multiple emitter location and signal parameter estimation
,”
IEEE Trans. Ant. Propag.
34
(
3
),
276
280
(
1986
).
52.
B. M.
Asl
and
A.
Mahloojifar
, “
Eigenspace-based minimum variance beamforming applied to medical ultrasound imaging
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
57
(
11
),
2381
2390
(
2010
).
53.
F. W.
Mauldin
,
D.
Lin
, and
J. A.
Hossack
, “
The singular value filter: A general filter design strategy for PCA-based signal separation in medical ultrasound imaging
,”
IEEE Trans. Med. Imag.
30
(
11
),
1951
1964
(
2011
).
54.
C.
Demené
,
T.
Deffieux
,
M.
Pernot
,
B.-F.
Osmanski
,
V.
Biran
,
J.-L.
Gennisson
,
L.-A.
Sieu
,
A.
Bergel
,
S.
Franqui
,
J.-M.
Correas
,
I.
Cohen
,
O.
Baud
, and
M.
Tanter
, “
Spatiotemporal clutter filtering of ultrafast ultrasound data highly increases Doppler and ultrasound sensitivity
,”
IEEE Trans. Med. Imag.
34
(
11
),
2271
2285
(
2015
).
55.
J.
Capon
, “
High-resolution frequency-wavenumber spectrum analysis
,”
Proc. IEEE
57
(
8
),
1408
1418
(
1969
).
56.
O. L.
Frost
, “
An algorithm for linearly constrained adaptive array processing
,”
Proc. IEEE
60
(
8
),
926
935
(
1972
).
You do not currently have access to this content.