In many mammals, upward-sweeping frequency-modulated (FM) sounds (up-chirps) evoke larger auditory brainstem responses than downward-sweeping sounds (down-chirps). To determine if similar effects occur in FM echolocating bats, auditory evoked responses (AERs) in big brown bats in response to up-chirps and down-chirps at different chirp durations and levels were recorded. Even though down-chirps are the biologically relevant stimulus for big brown bats, up-chirps typically evoked larger peaks in the AER, but with some exceptions at the shortest chirp durations. The up-chirp duration that produced the largest AERs and the greatest differences between up-chirps and down-chirps varied between individual bats and stimulus levels. Cross-covariance analyses using the entire AER waveform confirmed that amplitudes were typically larger to up-chirps than down-chirps at supra-threshold levels, with optimal durations around 0.5–1 ms. Changes in response latencies with stimulus levels were consistent with previous estimates of amplitude-latency trading. Latencies tended to decrease with increasing up-chirp duration and increase with increasing down-chirp duration. The effects of chirp direction on AER waveforms are generally consistent with those seen in other mammals but with small differences in response patterns that may reflect specializations for FM echolocation.

1.
Antunes
,
L. M.
,
Roughan
,
J. V.
, and
Flecknell
,
P. A.
(
2003
). “
Excitatory effects of fentanyl upon the rat electroencephalogram and auditory-evoked potential responses during anaesthesia
,”
Eur. J. Anaesthesiol.
20
,
800
808
.
2.
Bates
,
M. E.
, and
Simmons
,
J. A.
(
2010
). “
Effects of filtering of harmonics from biosonar echoes on delay acuity by big brown bats (Eptesicus fuscus)
,”
J. Acoust. Soc. Am.
128
,
936
946
.
3.
Bodenhamer
,
R. D.
, and
Pollak
,
G. D.
(
1981
). “
Time and frequency domain processing in the inferior colliculus of echolocating bats
,”
Hear. Res.
5
(
2-3
),
317
355
.
4.
Boku
,
S.
,
Riquimaroux
,
H.
,
Simmons
,
A. M.
, and
Simmons
,
J. A.
(
2015
). “
Auditory brainstem response of the Japanese house bat (Pipistrellus abramus)
,”
J. Acoust. Soc. Am.
137
(
3
),
1063
1068
.
5.
Burkard
,
R.
, and
Moss
,
C. F.
(
1994
). “
The brain-stem auditory evoked response in the big brown bat (Eptesicus fuscus) to clicks and frequency-modulated sweeps
,”
J. Acoust. Soc. Am.
96
(
2
),
801
810
.
6.
Casseday
,
J. H.
, and
Covey
,
E.
(
1992
). “
Frequency tuning properties of neurons in the inferior colliculus of an FM bat
,”
J. Comp. Neurol.
319
,
34
50
.
7.
Covey
,
E.
(
2005
). “
Neurobiological specializations in echolocating bats
,”
Anat. Rec. A
287A
,
1103
1116
.
8.
Covey
,
E.
, and
Casseday
,
J. H.
(
1999
). “
Timing in the auditory system of the bat
,”
Annu. Rev. Physiol.
61
,
457
476
.
9.
Dalland
,
J. I.
,
Vernon
,
J. A.
, and
Peterson
,
E. A.
(
1967
). “
Hearing and cochlear microphonic potentials in the bat, Eptesicus fuscus
,”
J. Neurophysiol.
30
(
4
),
697
709
.
10.
Dau
,
T.
,
Wegner
,
O.
,
Mellert
,
V.
, and
Kollmeier
,
B.
(
2000
). “
Auditory brainstem responses with optimized chirp signals compensating basilar-membrane dispersion
,”
J. Acoust. Soc. Am.
107
(
3
),
1530
1540
.
11.
Donaldson
,
G. S.
, and
Ruth
,
R. A.
(
1993
). “
Derived band auditory brainstem response estimates of traveling wave velocity in humans. I. Normal hearing subjects
,”
J. Acoust. Soc. Am.
93
,
940
951
.
12.
Elberling
,
C.
,
Callo
,
J.
, and
Don
,
M.
(
2010
). “
Evaluating auditory brainstem responses to different chirp stimuli at three levels of stimulation
,”
J. Acoust. Soc. Am.
128
(
1
),
215
223
.
13.
Elberling
,
C.
,
Don
,
M.
,
Cebulla
,
M.
, and
Sturzebecher
,
E.
(
2007
). “
Auditory steady-state responses to chirp stimuli based on cochlear traveling wave delay
,”
J. Acoust. Soc. Am.
122
(
5
),
2772
2785
.
14.
Ferragamo
,
M. J.
,
Haresign
,
T.
, and
Simmons
,
J. A.
(
1998
). “
Frequency tuning, latencies, and responses to FM sweeps in the inferior colliculus of the echolocating bat, Eptesicus fuscus
,”
J. Comp. Physiol. A
182
,
65
79
.
15.
Finneran
,
J. J.
,
Mulsow
,
J.
,
Houser
,
D. S.
, and
Burkard
,
R. F.
(
2016
). “
Place specificity of the click-evoked auditory brainstem response in the bottlenose dolphin (Tursiops truncatus)
,”
J. Acoust. Soc. Am.
140
,
2593
2602
.
16.
Finneran
,
J. J.
,
Mulsow
,
J.
,
Jones
,
R.
,
Houser
,
D. S.
, and
Burkard
,
R. F.
(
2017
). “
Bottlenose dolphin (Tursiops truncatus) auditory brainstem responses to frequency-modulated ‘chirp’ stimuli
,”
J. Acoust. Soc. Am.
142
(
2
),
708
717
.
17.
Fobel
,
O.
, and
Dau
,
T.
(
2004
). “
Searching for the optimal stimulus eliciting auditory brainstem responses in humans
,”
J. Acoust. Soc. Am.
116
(
4
),
2213
2222
.
18.
Fuzessery
,
Z. M.
(
1994
). “
Response selectivity for multiple dimensions of frequency sweeps in the pallid bat inferior colliculus
,”
J. Neurophysiol.
72
(
3
),
1061
1079
.
19.
Fuzessery
,
Z. M.
,
Richardson
,
M. D.
, and
Colburn
,
M. S.
(
2006
). “
Neural mechanisms underlying selectivity for the rate and direction of frequency-modulated sweeps in the inferior colliculus of the pallid bat
,”
J. Neurophysiol.
96
,
1320
1336
.
20.
Grinnell
,
A. D.
(
1963
). “
The neurophysiology of audition in bats: Intensity and frequency parameters
,”
J. Neurophysiol.
167
(
1
),
38
66
.
21.
Haplea
,
S.
,
Covey
,
E.
, and
Casseday
,
J. H.
(
1994
). “
Frequency tuning and response latencies at three levels in the brainstem of the echolocating bat, Eptesicus fuscus
,”
J. Comp. Physiol. A
174
,
671
683
.
22.
Heffner
,
H. E.
,
Koay
,
G.
, and
Heffner
,
R. E.
(
2008
). “
Comparison of behavioral and auditory brainstem response measures of threshold shift in rats exposed to loud sound
,”
J. Acoust. Soc. Am.
124
,
1093
1104
.
23.
Hoffmann
,
S.
,
Baier
,
L.
,
Borina
,
F.
,
Schuller
,
G.
,
Wiegrebe
,
L.
, and
Firzlaff
,
U.
(
2008
). “
Psychophysical and neurophysiological hearing thresholds in the bat Phyllostomus discolor
,”
J. Comp. Physiol. A
194
,
39
47
.
24.
Houser
,
D. S.
,
Mulsow
,
J.
,
Almunia
,
J.
, and
Finneran
,
J. J.
(
2019
). “
Frequency-modulated up-chirp stimuli enhance the auditory brainstem response of the killer whale (Orcinus orca)
,”
J. Acoust. Soc. Am.
146
,
289
296
.
25.
Ketten
,
D. R.
,
Simmons
,
J. A.
,
Riquimaroux
,
H.
, and
Arruda
,
J.
(
2014
). “
Twists and turns in cochlear anatomy: Curvatures related to infra vs ultrasonic hearing
,”
J. Acoust. Soc. Am.
135
(
4
),
2266
.
26.
Koay
,
G.
,
Heffner
,
H. E.
, and
Heffner
,
R. S.
(
1997
). “
Audiogram of the big brown bat (Eptesicus fuscus)
,”
Hear. Res.
105
,
202
210
.
27.
Kössl
,
M.
,
Hechavarria
,
J.
,
Voss
,
C.
,
Schaeffer
,
M.
, and
Vater
,
M.
(
2015
). “
Bat auditory cortex—Model for general mammalian auditory computation or special design solution for active time perception?
,”
Eur. J. Neurosci.
41
(
5
),
518
532
.
28.
Linnenschmidt
,
M.
, and
Wiegrebe
,
L.
(
2019
). “
Ontogeny of auditory brainstem responses in the bat, Phyllostomus discolor
,”
Hear. Res.
373
,
85
95
.
29.
Macías
,
S.
,
Luo
,
J.
, and
Moss
,
C. F.
(
2018
). “
Natural echolocation sequences evoke echo-delay selectivity in the auditory midbrain of the FM bat, Eptesicus fuscus
,”
J. Neurophys.
120
(
3
),
1323
1339
.
30.
Macías
,
S.
,
Mora
,
E. C.
,
Coro
,
F.
, and
Kössl
,
M.
(
2006
). “
Threshold minima and maxima in the behavioral audiograms of the bats Artibeus jamaicensis and Eptesicus fuscus are not produced by cochlear mechanics
,”
Hear. Res.
212
,
245
250
.
31.
Moss
,
C. F.
, and
Schnitzler
,
H.-U.
(
1989
). “
Accuracy of target ranging in echolocating bats: Acoustic information processing
,”
J. Comp. Physiol. A
165
,
383
393
.
32.
Mulsow
,
J.
, and
Reichmuth
,
C.
(
2013
). “
The binaural click-evoked auditory brainstem response of the California sea lion (Zalophus californianus)
,”
J. Acoust. Soc. Am.
133
(
1
),
579
586
.
33.
Pollak
,
G. D.
(
1988
). “
Time is traded for intensity in the bat's auditory system
,”
Hear. Res.
36
(
2-3
),
107
124
.
34.
Pypendop
,
B.
,
Poncelet
,
L.
, and
Verstegen
,
J.
(
1999
). “
Use of midlatency auditory-evoked potentials as indicator of unconsciousness in the dog: Characterisation of the effects of acepromazine–thiopentone, medetomidine–thiopentone and medetomidine–butorphanol–midazolam combinations
,”
Res. Vet. Sci.
67
,
35
39
.
35.
Quiroga
,
R. Q.
,
Nadasdy
,
Z.
, and
Ben-Shaul
,
Y.
(
2004
). “
Unsupervised spike detection and sorting with wavelets and superparamagnetic clustering
,”
Neural Comput.
16
,
1661
1687
.
36.
Robles
,
L.
, and
Ruggero
,
M. A.
(
2001
). “
Mechanics of the mammalian cochlea
,”
Physiol. Rev.
81
,
1305
1352
.
37.
Rossi
,
G. T.
, and
Britt
,
R. H.
(
1984
). “
Effects of hypothermia on the cat brain-stem auditory evoked response
,”
Electroencephalogr. Clin. Neurophysiol.
57
,
143
155
.
38.
Rothholtz
,
V.
(
1999
). “
Interpretation of modulation: Implications of the structural and functional relationships within the auditory system of the big brown bat
,” Master's thesis, Brown University, Providence, RI.
39.
Schnitzler
,
H.-U.
(
1968
). “
Die Ultraschall-Ortungslaute der Hufeisen-Fledermäuse (Chiroptera-Rhinolophidae) in verschiedenen Orientierungssituationen” [“The ultrasound echolocation sounds produced by greater horseshoe bats (Chiroptera: Rhinolophidae) in different orientation situations”]
,
Z Vergl Physiol
57
,
376
408
.
40.
Shore
,
S. E.
, and
Nuttall
,
A. L.
(
1985
). “
High-synchrony cochlear compound action potentials evoked by rising frequency-swept tone bursts
,”
J. Acoust. Soc. Am.
78
(
4
),
1286
1295
.
41.
Simmons
,
J. A.
,
Moss
,
C. F.
, and
Ferragamo
,
M.
(
1990
). “
Convergence of temporal and spectral information into acoustic images of complex sonar targets perceived by the echolocating bat, Eptesicus fuscus
,”
J. Comp. Physiol. A
166
,
449
470
.
42.
Simmons
,
J. A.
,
Neretti
,
N.
,
Intrator
,
N.
,
Altes
,
R. A.
,
Ferragamo
,
M. J.
, and
Sanderson
,
M. I.
(
2004
). “
Delay accuracy in bat sonar is related to the reciprocal of normalized echo bandwidth, or Q
,”
Proc. Natl. Acad. Sci. U.S.A.
101
,
3638
3643
.
43.
Smotherman
,
M.
, and
Bakshi
,
K.
(
2019
). “
Forward masking enhances the auditory brainstem response in the free-tailed bat, Tadarida brasiliensis, during a critical time window for sonar reception
,”
J. Acoust. Soc. Am.
145
,
EL19
EL24
.
44.
Stamper
,
S. A.
,
Bates
,
M. E.
,
Benedicto
,
D.
, and
Simmons
,
J. A.
(
2009
). “
Role of broadcast harmonics in echo delay perception by big brown bats
,”
J. Comp. Physiol. A
195
,
79
89
.
45.
Stronks
,
H. C.
,
Aarts
,
M. C. J.
, and
Klis
,
S. F. L.
(
2010
). “
Effects of isoflurane on auditory evoked potentials in the cochlea and brainstem of guinea pigs
,”
Hear. Res.
260
,
20
29
.
46.
Suga
,
N.
(
1968
). “
Analysis of frequency-modulated and complex sounds by single auditory neurons of bats
,”
J. Physiol. Lond.
198
,
51
80
.
47.
Suga
,
N.
(
2015
). “
Neural processing of auditory signals in the time domain: Delay-tuned coincidence detectors in the mustached bat
,”
Hear. Res.
324
,
19
36
.
48.
Surlykke
,
A.
, and
Moss
,
C. F.
(
2000
). “
Echolocation behavior of big brown bats, Eptesicus fuscus, in the field and the laboratory
,”
J. Acoust. Soc. Am.
108
(
5
),
2419
2429
.
49.
Vater
,
M.
, and
Siefer
,
W.
(
1995
). “
The cochlea of Tadarida brasiliensis: Specialized functional organization in a generalized bat
,”
Hear. Res.
91
,
178
195
.
50.
Vater
,
M.
, and
Kössl
,
M.
(
2011
). “
Comparative aspects of cochlear functional organization in mammals
,”
Hear. Res.
273
,
89
99
.
51.
Von Békésy
,
G.
(
1960
).
Experiments in Hearing
(
McGraw Hill
,
Oxford, England
).
52.
Willis
,
C. K. R.
, and
Brigham
,
R. M.
(
2003
). “
Defining torpor in free-ranging bats: Experimental evaluation of external temperature-sensitive radio transmitters and the concept of active temperature
,”
J. Comp. Physiol. B
173
,
379
389
.
You do not currently have access to this content.