Acoustic tweezers allow for manipulation of small objects like elastic spheres with a force generated by the radiation pressure which arises from the nonlinear interaction between the incident and scattered waves by the object. The accurate control of the object by acoustic tweezers requires the study of the components of the three-dimensional (3D) force. If the physical properties of the elastic sphere are known, then the 3D components of the force can be calculated thanks to a decomposition of the incident acoustic field in the spherical functions basis. This study proposes evaluating the expansion coefficients. Three methods are used and compared. The first one consists of measuring the acoustic field on a spherical surface centered on the theoretical position of the object and to calculate the spherical functions decomposition by Lebedev quadratures. The second method is based on the measurement of the acoustic field at random points in a spherical volume and on the resolution of the inverse problem by a sparse method called the orthogonal matching pursuit. In the third method, the incident beam is measured on a transverse plane, decomposed into a sum of plane waves, and then the expansion coefficients are calculated. The results of the three methods will be presented and compared.

1.
A.
Ashkin
, “
Acceleration and trapping of particles by radiation pressure
,”
Phys. Rev. Lett.
24
(
4
),
156
(
1970
).
2.
A.
Ashkin
,
J. M.
Dziedzic
,
J. E.
Bjorkholm
, and
S.
Chu
, “
Observation of a single-beam gradient force optical trap for dielectric particles
,”
Opt. Lett.
11
(
5
),
288
290
(
1986
).
3.
A.
Ashkin
,
J. M.
Dziedzic
, and
T.
Yamane
, “
Optical trapping and manipulation of single cells using infrared laser beams
,”
Nature
330
(
6150
),
769
(
1987
).
4.
T.
Strick
,
J.-F.
Allemand
,
D.
Bensimon
, and
V.
Croquette
, “
Twisting and stretching single DNA molecules
,”
Prog. Biophys. Mol. Biol.
74
(
1–2
),
115
140
(
2000
).
5.
T.
Lionnet
,
S.
Joubaud
,
R.
Lavery
,
D.
Bensimon
, and
V.
Croquette
, “
Wringing out DNA
,”
Phys. Rev. Lett.
96
(
17
),
178102
(
2006
).
6.
W. J.
Xie
,
C. D.
Cao
,
Y. J.
,
Z. Y.
Hong
, and
B.
Wei
, “
Acoustic method for levitation of small living animals
,”
Appl. Phys. Lett.
89
(
21
),
214102
(
2006
).
7.
D. J.
Collins
,
C.
Devendran
,
Z. C.
Ma
,
J. W.
Ng
,
A.
Neild
, and
Y.
Ai
, “
Acoustic tweezers via sub-time-of-flight regime surface acoustic waves
,”
Sci. Adv.
2
(
7
),
e1600089
(
2016
).
8.
X. Y.
Ding
,
S.-C. S.
Lin
,
B.
Kiraly
,
H. J.
Yue
,
S. X.
Li
,
I.-K.
Chiang
,
J. J.
Shi
,
S. J
Benkovic
, and
T. J.
Huang
, “
On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves
,”
Proc. Natl. Acad. Sci. USA
109
(
28
),
11105
11109
(
2012
).
9.
J.
Wu
, “
Acoustical tweezers
,”
J. Acoust. Soc. Am.
89
(
5
),
2140
2143
(
1991
).
10.
D.
Baresch
, “Acoustic tweezers: Trapping and manipulation of an object by radiation pressure of a progressive wave
,” Ph.D. thesis,
Université Pierre et Marie Curie-Paris
, Paris 6,
2014
.
11.
D.
Baresch
,
J.-L.
Thomas
, and
R.
Marchiano
, “
Spherical vortex beams of high radial degree for enhanced single-beam tweezers
,”
J. Appl. Phys.
113
,
184901
(
2013
).
12.
D.
Baresch
,
J.-L.
Thomas
, and
R.
Marchiano
, “
Observation of a single-beam gradient force acoustical trap for elastic particles: Acoustical tweezers
,”
Phys. Rev. Lett.
116
(
2
),
024301
(
2016
).
13.
M.
Baudoin
,
J.-C.
Gerbedoen
,
A.
Riaud
,
O.
Bou Matar
,
N.
Smagin
, and
J.-L.
Thomas
, “
Folding a focalized acoustical vortex on a flat holographic transducer: Miniaturized selective acoustical tweezers
,”
Sci. Adv.
5
,
eaav1967
(
2019
).
14.
A. H.
Mack
,
D. J.
Schlingman
,
L.
Regan
, and
S. G. J.
Mochrie
, “
Practical axial optical trapping
,”
Rev. Sci. Instrum.
83
(
10
),
103106
(
2012
).
15.
A. R.
Carter
,
Y.
Seol
, and
T. T.
Perkins
, “
Precision surface-coupled optical-trapping assay with one-basepair resolution
,”
Biophys. J.
96
(
7
),
2926
2934
(
2009
).
16.
N.
Malagnino
,
G.
Pesce
,
A.
Sasso
, and
E.
Arimondo
, “
Measurements of trapping efficiency and stiffness in optical tweezers
,”
Opt. Commun.
214
(
1–6
),
15
24
(
2002
).
17.
J.
Lee
,
C. Y.
Lee
, and
K. K.
Shung
, “
Calibration of sound forces in acoustic traps
,”
IEEE Trans. Ultrason. Ferr.
57
(
10
),
2305
2310
(
2010
).
18.
D.
Baresch
,
J.-L.
Thomas
, and
R.
Marchiano
, “
Orbital angular momentum transfer to stably trapped elastic particles in acoustical vortex beams
,”
Phys. Rev. Lett.
121
(
07
),
074301
(
2018
).
19.
D.
Baresch
,
J.-L.
Thomas
, and
R.
Marchiano
, “
Three-dimensional acoustic radiation force on an arbitrarily located elastic sphere
,”
J. Acoust. Soc. Am.
133
(
1
),
25
36
(
2013
).
20.
A.
Marzo
,
S. A.
Seah
,
B. W.
Drinkwater
,
D. R.
Sahoo
,
B.
Long
, and
S.
Subramanian
, “
Holographic acoustic elements for manipulation of levitated objects
,”
Nature Commun.
6
,
8661
(
2015
).
21.
B. T.
Hefner
and
P. L.
Marston
, “
An acoustical helicoidal wave transducer with applications for the alignment of ultrasonic and underwater systems
,”
J. Acoust. Soc. Am.
106
(
6
),
3313
3316
(
1999
).
22.
R.
Marchiano
and
J.-L.
Thomas
, “
Synthesis and analysis of linear and nonlinear acoustical vortices
,”
Phys. Rev. E
71
(
6
),
066616
(
2005
).
23.
C. H. L.
Beentjes
, “
Quadrature on a spherical surface
,” http://people.maths.ox.ac.uk/beentjes/Essays (
2015
).
24.
S. L.
Sobolev
, “
Cubature formulas on the sphere invariant under finite groups of rotations
,” in
Selected Works of SL Sobolev
(
Springer
,
New York
,
2006
), pp.
461
466
.
25.
V. I.
Lebedev
and
D. N.
Laikov
, “
A quadrature formula for the sphere of the 131st algebraic order of accuracy
,” in
Doklady Mathematics
(
Pleiades Publishing
,
New York
,
1999
), Vol.
59
, pp.
477
481
.
26.
B.
Rafaely
, “
The spherical-shell microphone array
,”
IEEE Trans. Audio Speech
16
(
4
),
740
747
(
2008
).
27.
T. T.
Cai
and
L.
Wang
, “
Orthogonal matching pursuit for sparse signal recovery with noise
,”
IEEE Trans. Inform. Theory
57
(
7
),
4680
4688
(
2011
).
28.
Y. C.
Eldar
,
P.
Kuppinger
, and
H.
Bolcskei
, “
Block-sparse signals: Uncertainty relations and efficient recovery
,”
IEEE Trans. Signal Process.
58
(
6
),
3042
3054
(
2010
).
29.
O. A.
Sapozhnikov
and
M. R.
Bailey
, “
Radiation force of an arbitrary acoustic beam on an elastic sphere in a fluid
,”
J. Acoust. Soc. Am.
133
(
2
),
661
676
(
2013
).
30.
L. V.
King
, “
On the acoustic radiation pressure on spheres
,”
Proc. R. Soc. Lond. A
147
(
861
),
212
240
(
1934
).
31.
J.-L.
Thomas
and
R.
Marchiano
, “
Pseudo angular momentum and topological charge conservation for nonlinear acoustical vortices
,”
Phys. Rev. Lett.
91
(
24
),
244302
(
2003
).
32.
R.
Marchiano
and
J.-L.
Thomas
, “
Doing arithmetic with nonlinear acoustic vortices
,”
Phys. Rev. Lett.
101
(
6
),
064301
(
2008
).
33.
H.
Goldstein
,
C. P.
Poole
, and
J. L.
Safko
,
Classical Mechanics
, 3rd ed. (
Addison-Wesley
,
Boston, MA
,
2001
).
34.
G. T.
Silva
,
J. H.
Lopes
, and
F. G.
Mitri
, “
Off-axial acoustic radiation force of repulsor and tractor Bessel beams on a sphere
,”
IEEE Trans. Ultrason. Ferr.
60
(
6
),
1207
1212
(
2013
).
35.
G. T.
Silva
,
T. P.
Lobo
, and
F. G.
Mitri
, “
Radiation torque produced by an arbitrary acoustic wave
,”
EPL
97
,
54003
(
2012
).
You do not currently have access to this content.