Ultrasonic techniques could be good candidates to aid the assessment of osteoporosis detection, due to their non-intrusiveness and low cost. While earlier studies made use of the measured ultrasonic phase velocity and attenuation inside the bone, very few have considered an inverse identification of both the intrinsic pore microstructure and the mechanical properties of the bone, based on Biot's model. The main purpose of this work is to present an in vitro methodology for bone identification, adopting a statistical Bayesian inference technique using ultrasonic transmitted signals, which allows the retrieval of the identified parameters and their uncertainty. In addition to the bone density, Young's modulus and Poisson's ratio, the bone pore microstructure parameters (porosity, tortuosity, and viscous length) are identified. These additional microstructural terms could improve the knowledge on the correlations between bone microstructure and bone diseases, since they provide more information on the trabecular structure. In general, the exact properties of the saturating fluid are unknown (bone marrow and blood in the case of bone study) so in this work, the fluid properties (water) are identified during the inference as a proof of concept.

1.
R.
Marcus
,
D.
Feldman
,
D.
Nelson
, and
C. J.
Rosen
,
Fundamentals of Osteoporosis
(
Academic Press
,
New York
,
2009
).
2.
J. D.
Sibonga
, “
Spaceflight-induced bone loss: Is there an osteoporosis risk?
,”
Current Osteoporosis Reports
11
(
2
),
92
98
(
2013
).
3.
E. S.
Orwoll
,
R. A.
Adler
,
S.
Amin
,
N.
Binkley
,
E. M.
Lewiecki
,
S. M.
Petak
,
S. A.
Shapses
,
M.
Sinaki
,
N. B.
Watts
, and
J. D.
Sibonga
, “
Skeletal health in long-duration astronauts: Nature, assessment, and management recommendations from the NASA bone summit
,”
J. Bone Mineral Res.
28
(
6
)
1243
1255
(
2013
).
4.
C.
Langton
,
S.
Palmer
, and
R.
Porter
, “
The measurement of broadband ultrasonic attenuation in cancellous bone
,”
Eng. Med.
13
(
2
),
89
91
(
1984
).
5.
M.
McKelvie
and
S.
Palmer
, “
The interaction of ultrasound with cancellous bone
,”
Phys. Med. Biol.
36
(
10
),
1331
1340
(
1991
).
6.
J. L.
Williams
, “
Ultrasonic wave propagation in cancellous and cortical bone: Prediction of some experimental results by Biot's theory
,”
J. Acoust. Soc. Am.
91
(
2
),
1106
1112
(
1992
).
7.
C. F.
Njeh
, “
The dependence of ultrasound velocity and attenuation on the material properties of cancellous bone
,” Ph.D. thesis,
Sheffield Hallam University
,
1995
.
8.
J.
Williams
,
M.
Grimm
,
F.
Wehrli
,
K.
Foster
, and
H.
Chung
, “
Prediction of frequency and pore size dependent attenuation of ultrasound in trabecular bone using Biot's theory
,” in
Mechanics of Poroelastic Media
(
Springer
,
New York
,
1996
), pp.
263
271
.
9.
R.
Hodgskinson
,
C.
Njeh
,
M.
Whitehead
, and
C.
Langton
, “
The non-linear relationship between bua and porosity in cancellous bone
,”
Phys. Med. Biol.
41
(
11
),
2411
2420
(
1996
).
10.
A.
Hosokawa
and
T.
Otani
, “
Ultrasonic wave propagation in bovine cancellous bone
,”
J. Acoust. Soc. Am.
101
(
1
),
558
562
(
1997
).
11.
L.
Cardoso
,
F.
Teboul
,
L.
Sedel
,
C.
Oddou
, and
A.
Meunier
, “
In vitro acoustic waves propagation in human and bovine cancellous bone
,”
J. Bone Mineral Res.
18
(
10
),
1803
1812
(
2003
).
12.
Z. E. A.
Fellah
,
J. Y.
Chapelon
,
S.
Berger
,
W.
Lauriks
, and
C.
Depollier
, “
Ultrasonic wave propagation in human cancellous bone: Application of Biot theory
,”
J. Acoust. Soc. Am.
116
(
1
),
61
73
(
2004
).
13.
P.
Laugier
and
G.
Haïat
,
Bone Quantitative Ultrasound
(
Springer
,
New York
,
2011
), Vol.
576
.
14.
C.
Njeh
,
C.
Boivin
, and
C.
Langton
, “
The role of ultrasound in the assessment of osteoporosis: A review
,”
Osteoporosis Int.
7
(
1
),
7
22
(
1997
).
15.
C.-C.
Glüer
and
I. Q. U. C. Group
, “
Quantitative ultrasound techniques for the assessment of osteoporosis: Expert agreement on current status
,”
J. Bone Mineral Res.
12
(
8
),
1280
1288
(
1997
).
16.
M. A.
Biot
, “
Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range
,”
J. Acoust. Soc. Am.
28
(
2
),
179
191
(
1956
).
17.
K. R.
Marutyan
,
M. R.
Holland
, and
J. G.
Miller
, “
Anomalous negative dispersion in bone can result from the interference of fast and slow waves
,”
J. Acoust. Soc. Am.
120
(
5
),
EL55
EL61
(
2006
).
18.
E. R.
Hughes
,
T. G.
Leighton
,
P. R.
White
, and
G. W.
Petley
, “
Investigation of an anisotropic tortuosity in a Biot model of ultrasonic propagation in cancellous bone
,”
J. Acoust. Soc. Am.
121
(
1
),
568
574
(
2007
).
19.
M.
Pakula
,
F.
Padilla
,
P.
Laugier
, and
M.
Kaczmarek
, “
Application of Biot's theory to ultrasonic characterization of human cancellous bones: Determination of structural, material, and mechanical properties
,”
J. Acoust. Soc. Am.
123
(
4
),
2415
2423
(
2008
).
20.
G.
Rus
,
M.
Pakula
,
Q.
Grimal
, and
P.
Laugier
, “
Information theory framework to reconstruct Biot constants of trabecular bone from ultrasound
,” in
2015 6th European Symposium on Ultrasonic Characterization of Bone
(
2015
), pp.
1
4
.
21.
H.
Chen
,
R. P.
Gilbert
, and
P.
Guyenne
, “
A Biot model for the determination of material parameters of cancellous bone from acoustic measurements
,”
Inverse Prob.
34
(
8
),
085009
(
2018
).
22.
T.
Haire
and
C.
Langton
, “
Biot theory: A review of its application to ultrasound propagation through cancellous bone
,”
Bone
24
(
4
),
291
295
(
1999
).
23.
J.
Dvorkin
,
G.
Mavko
, and
A.
Nur
, “
Squirt flow in fully saturated rocks
,”
Geophys.
60
(
1
),
97
107
(
1995
).
24.
G. A.
Gist
, “
Fluid effects on velocity and attenuation in sandstones
,”
J. Acoust. Soc. Am.
96
(
2
),
1158
1173
(
1994
).
25.
D. L.
Johnson
,
J.
Koplik
, and
R.
Dashen
, “
Theory of dynamic permeability and tortuosity in fluid-saturated porous media
,”
J. Fluid Mech.
176
,
379
402
(
1987
).
26.
N.
Sebaa
, “
Propagation des ondes acoustiques dans les milieux poreux saturés: Application du modèle de biot à détermination des paramètres de mousses plastiques et de l'os trabéculaire
” (“Propagation of acoustic waves in porous media: Application of the Biot model for the determination of plastic foams and trabecular bone properties”), Ph.D. thesis,
The University of Maine
,
2006
.
27.
J.
Jocker
and
D.
Smeulders
, “
Ultrasonic measurements on poroelastic slabs: Determination of reflection and transmission coefficients and processing for Biot input parameters
,”
Ultrasonics
49
(
3
),
319
330
(
2009
).
28.
M.
Fellah
,
Z. E. A.
Fellah
,
F.
Mitri
,
E.
Ogam
, and
C.
Depollier
, “
Transient ultrasound propagation in porous media using Biot theory and fractional calculus: Application to human cancellous bone
,”
J. Acoust. Soc. Am.
133
(
4
),
1867
1881
(
2013
).
29.
N.
Sebaa
,
Z. E. A.
Fellah
,
M.
Fellah
,
E.
Ogam
,
A.
Wirgin
,
F.
Mitri
,
C.
Depollier
, and
W.
Lauriks
, “
Ultrasonic characterization of human cancellous bone using the Biot theory: Inverse problem
,”
J. Acoust. Soc. Am.
120
(
4
),
1816
1824
(
2006
).
30.
E.
Ogam
,
Z. E. A.
Fellah
,
N.
Sebaa
, and
J.-P.
Groby
, “
Non-ambiguous recovery of Biot poroelastic parameters of cellular panels using ultrasonic waves
,”
J. Sound Vib.
330
(
6
),
1074
1090
(
2011
).
31.
J. L.
Buchanan
,
R. P.
Gilbert
, and
Y. O.
Miao-Jung
, “
Recovery of the parameters of cancellous bone by inversion of effective velocities, and transmission and reflection coefficients
,”
Inverse Prob.
27
(
12
),
125006
(
2011
).
32.
M.
Niskanen
,
O.
Dazel
,
J.-P.
Groby
,
A.
Duclos
, and
T.
Lähivaara
, “
Characterising poroelastic materials in the ultrasonic range—A Bayesian approach
,” arXiv:1810.01646 (
2018
).
33.
J.
Vanhuyse
,
E.
Deckers
,
S.
Jonckheere
,
B.
Pluymers
, and
W.
Desmet
, “
Global optimisation methods for poroelastic material characterisation using a clamped sample in a kundt tube setup
,”
Mech. Syst. Sig. Process.
68–69
,
462
478
(
2016
).
34.
Y.
Champoux
and
J.-F.
Allard
, “
Dynamic tortuosity and bulk modulus in air-saturated porous media
,”
J. Appl. Acoust.
70
(
4
),
1975
1979
(
1991
).
35.
J.-D.
Chazot
,
E.
Zhang
, and
J.
Antoni
, “
Acoustical and mechanical characterization of poroelastic materials using a Bayesian approach
,”
J. Acoust. Soc. Am.
131
(
6
),
4584
4595
(
2012
).
36.
M.
Niskanen
,
J.-P.
Groby
,
A.
Duclos
,
O.
Dazel
,
J.
Le Roux
,
N.
Poulain
,
T.
Huttunen
, and
T.
Lähivaara
, “
Deterministic and statistical characterization of rigid frame porous materials from impedance tube measurements
,”
J. Acoust. Soc. Am.
142
(
4
),
2407
2418
(
2017
).
37.
C. C.
Anderson
,
A. Q.
Bauer
,
M. R.
Holland
,
M.
Pakula
,
P.
Laugier
,
G. L.
Bretthorst
, and
J. G.
Miller
, “
Inverse problems in cancellous bone: Estimation of the ultrasonic properties of fast and slow waves using Bayesian probability theory
,”
J. Acoust. Soc. Am.
128
(
5
),
2940
2948
(
2010
).
38.
J. J.
Hoffman
,
A. M.
Nelson
,
M. R.
Holland
, and
J. G.
Miller
, “
Cancellous bone fast and slow waves obtained with Bayesian probability theory correlate with porosity from computed tomography
,”
J. Acoust. Soc. Am.
132
(
3
),
1830
1837
(
2012
).
39.
M. A.
Biot
, “
Mechanics of deformation and acoustic propagation in porous media
,”
J. Appl. Acoust.
33
(
4
),
1482
1498
(
1962
).
40.
J.
Allard
and
N.
Atalla
,
Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials
, 2nd ed. (
John Wiley & Sons
,
New York
,
2009
).
41.
L.
Gibson
, “
The mechanical behaviour of cancellous bone
,”
J. Biomech.
18
(
5
),
317
328
(
1985
).
42.
C.
Boutin
, “
Rayleigh scattering of acoustic waves in rigid porous media
,”
J. Acoust. Soc. Am.
122
(
4
),
1888
1905
(
2007
).
43.
M.
Biot
and
D.
Willis
, “
The elastic coefficients of the theory of consolidation
,”
J. Appl. Mech.
24
,
594
601
(
1957
).
44.
G.
Gautier
,
L.
Kelders
,
J.-P.
Groby
,
O.
Dazel
,
L.
De Ryck
, and
P.
Leclaire
, “
Propagation of acoustic waves in a one-dimensional macroscopically inhomogeneous poroelastic material
,”
J. Acoust. Soc. Am.
130
(
3
),
1390
1398
(
2011
).
45.
O.
Dazel
,
J.-P.
Groby
,
B.
Brouard
, and
C.
Potel
, “
A stable method to model the acoustic response of multilayered structures
,”
J. Appl. Phys.
113
(
8
),
083506
(
2013
).
46.
S. B.
Lang
, “
Ultrasonic method for measuring elastic coefficients of bone and results on fresh and dried bovine bones
,”
IEEE Trans. Biomed. Eng.
BME-17
,
101
105
(
1970
).
47.
R.
Roncen
,
Z. E. A.
Fellah
,
E.
Piot
,
F.
Simon
,
E.
Ogam
,
M.
Fellah
, and
C.
Depollier
, “
Inverse identification of a higher order viscous parameter of rigid porous media in the high frequency domain
,”
J. Acoust. Soc. Am.
145
(
3
),
1629
1639
(
2019
).
48.
R. C.
Smith
,
Uncertainty Quantification: Theory, Implementation, and Applications
(
Siam
,
Philadelphia, PA
,
2013
), Vol.
12
.
49.
N.
Xiang
and
C.
Fackler
, “
Objective Bayesian analysis in acoustics
,”
Acoust. Today
11
(
2
),
54
61
(
2015
).
50.
Q.
Grimal
,
G.
Rus
,
W. J.
Parnell
, and
P.
Laugier
, “
A two-parameter model of the effective elastic tensor for cortical bone
,”
J. Biomech.
44
(
8
),
1621
1625
(
2011
).
51.
J. Y.
Rho
,
R. B.
Ashman
, and
C. H.
Turner
, “
Young's modulus of trabecular and cortical bone material: Ultrasonic and microtensile measurements
,”
J. Biomech.
26
(
2
),
111
119
(
1993
).
52.
W. R.
Gilks
,
S.
Richardson
, and
D.
Spiegelhalter
,
Markov Chain Monte Carlo in Practice
(
Chapman and Hall/CRC
,
New York
,
1995
).
53.
N.
Metropolis
,
A. W.
Rosenbluth
,
M. N.
Rosenbluth
,
A. H.
Teller
, and
E.
Teller
, “
Equation of state calculations by fast computing machines
,”
J. Chem. Phys.
21
(
6
),
1087
1092
(
1953
).
54.
W. K.
Hastings
, “
Monte Carlo sampling methods using Markov chains and their applications
,”
Biometrika
57
(
1
),
97
109
(
1970
).
55.
R.
Roncen
,
Z. E. A.
Fellah
,
F.
Simon
,
E.
Piot
,
M.
Fellah
,
E.
Ogam
, and
C.
Depollier
, “
Bayesian inference for the ultrasonic characterization of rigid porous materials using reflected waves by the first interface
,”
J. Acoust. Soc. Am.
144
(
1
),
210
221
(
2018
).
56.
R.
Roncen
, “Modélisation et identification par inférence bayésienne de matériaux poreux acoustiques en aéronautique (Modelling and Bayesian inference identification of acoustic porous materials in aeronautics)
,” Ph.D. thesis,
Université de Toulouse
,
2018
.
57.
E.
Laloy
and
J. A.
Vrugt
, “
High-dimensional posterior exploration of hydrologic models using multiple-try dream(zs) and high-performance computing
,”
Water Resour. Res.
48
(
1
),
W01526
, (
2012
).
58.
A.
Gelman
and
D. B.
Rubin
, “
Inference from iterative simulation using multiple sequences
,”
Stat. Sci.
7
(
4
),
457
472
(
1992
).
59.
60.
C.
Zhang
,
L. H.
Le
,
R.
Zheng
,
D.
Ta
, and
E.
Lou
, “
Measurements of ultrasonic phase velocities and attenuation of slow waves in cellular aluminum foams as cancellous bone-mimicking phantoms
,”
J. Acoust. Soc. Am.
129
(
5
),
3317
3326
(
2011
).
61.
L. J.
Gibson
and
M. F.
Ashby
,
Cellular Solids: Structure and Properties
, 2nd ed., Cambridge Solid State Science Series (
Cambridge University Press
,
Cambridge
,
1997
).
62.
Alumina properties
, https://www.azom.com/properties.aspx?ArticleID=105 (Last viewed March 26,
2019
).
63.
W.
Suchanek
and
M.
Yoshimura
, “
Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants
,”
J. Mater. Res.
13
(
1
).
94
117
(
1998
).
64.
V.
Orlovskii
,
V.
Komlev
, and
S.
Barinov
, “
Hydroxyapatite and hydroxyapatite-based ceramics
,”
Inorganic Mater.
38
(
10
),
973
984
(
2002
).
65.
Biomet Deutschland GmbH
, Gustav-Krone-Str. 2, D-14167 Berlin, Bone Substitute Materials: Overview, http://www.biomet.co.uk/userfiles/files/Biomaterials/Bone%20substitute%20materials.pdf (Last viewed April 5,
2019
).
66.
T. M.
Keaveny
and
W. C.
Hayes
, “
A 20-year perspective on the mechanical properties of trabecular bone
,”
J. Biomech. Eng.
115
(
4B
),
534
542
(
1993
).
67.
P.
Knauss
, “
Material properties and strength behaviour of spongy bone tissue at the coxal human femur
” (author's transl),
Biomedizinische Technik (Biomed. Eng.)
26
(
9
),
200
210
(
1981
).
68.
R. B.
Ashman
and
J. Y.
Rho
, “
Elastic modulus of trabecular bone material
,”
J. Biomech.
21
(
3
),
177
181
(
1988
).
69.
Z. E. A.
Fellah
,
F. G.
Mitri
,
M.
Fellah
,
E.
Ogam
, and
C.
Depollier
, “
Ultrasonic characterization of porous absorbing materials: Inverse problem
,”
J. Sound. Vib.
302
(
4
),
746
759
(
2007
).
70.
K. V.
Horoshenkov
,
J.-P.
Groby
, and
O.
Dazel
, “
Asymptotic limits of some models for sound propagation in porous media and the assignment of the pore characteristic lengths
,”
J. Acoust. Soc. Am.
139
(
5
),
2463
2474
(
2016
).
71.
H.
Aygün
,
K.
Attenborough
,
W.
Lauriks
,
P. A.
Rubini
, and
C. M.
Langton
, “
Wave propagation in stereo-lithographical (stl) bone replicas at oblique incidence
,”
Appl. Acoust.
72
(
7
),
458
463
(
2011
).
You do not currently have access to this content.