A hail-producing supercell on 11 May 2017 produced a small tornado near Perkins, Oklahoma (35.97, −97.04) at 2013 UTC. Two infrasound microphones with a 59-m separation and a regional Doppler radar station were located 18.7 and 70 km from the tornado, respectively. Elevated infrasound levels were observed starting 7 min before the verified tornado. Infrasound data below ∼5 Hz was contaminated with wind noise, but in the 5–50 Hz band the infrasound was independent of wind speed with a bearing angle that was consistent with the movement of the storm core that produced the tornado. During the tornado, a 75 dB peak formed at ∼8.3 Hz, which was 18 dB above pre-tornado levels. This fundamental frequency had overtones (18, 29, 36, and 44 Hz) that were linearly related to mode number. Analysis of a larger period of time associated with two infrasound bursts (the tornado occurred during the first event) shows that the spectral peaks from the tornado were present from 4 min before to 40 min after tornadogenesis. This suggests that the same geophysical process(es) was active during this entire window.

1.
Abdullah
,
A. J.
(
1966
). “
The musical sound emitted by a tornado
,”
Mon. Weather Rev.
94
,
213
220
.
2.
Akhalkatsi
,
M.
, and
Gogoberidze
,
G.
(
2009
). “
Infrasound generation by tornadic supercell storms
,”
Q. J. Roy. Meteor. Soc.
135
,
935
940
.
3.
Alberts
,
W. C. K.
 II
,
Tenney
,
S. M.
, and
Noble
,
J. M.
(
2013
). “
Assessment of operational progress of NASA Langley developed windshield and microphone for infrasound
,” Army Research Laboratory Technical Report No. ARL-TR-6417.
4.
Arnold
,
R. T.
,
Bass
,
H. E.
, and
Bolen
,
L. E.
(
1976
). “
Acoustic spectral analysis of three tornadoes
,”
J. Acoust. Soc. Am.
60
,
584
593
.
5.
Ash
,
R. L.
,
Zardadkhan
,
I.
, and
Zuckerwar
,
A. J.
(
2011
). “
The influence of pressure relaxation on the structure of an axial vortex
,”
Phys. Fluids
23
,
073101
.
6.
Balachandran
,
N. K.
(
1983
). “
Acoustic and electric signals from lightning
,”
J. Geophys. Res.-Oceans
88
(
C6
),
3879
3884
, .
7.
Bedard
,
A. J.
(
1998
). “
Infrasonic and near infrasonic atmospheric sounding and imaging
,” in
The Progress in Electromagnetics Research Symposium, 4th International Workshop on Radar Polarimetry
, July 13–17, Nantes, France.
8.
Bedard
,
A. J.
(
2005
). “
Low-frequency atmospheric acoustic energy associated with vortices produced by thunderstorms
,”
Mon. Weather Rev.
133
(
1
),
241
263
.
9.
Bedard
,
A. J.
,
Bartram
,
B. W.
,
Entwistle
,
B.
,
Golden
,
J.
,
Hodanish
,
S.
,
Jones
,
R. M.
,
Nishiyama
,
R. T.
,
Keane
,
A. N.
,
Mooney
,
L.
,
Nicholls
,
M.
,
Szoke
,
E. J.
,
Thaler
,
E.
, and
Welsh
,
D. C.
(
2004a
). “
Overview of the ISNET data set and conclusions and recommendations from a March 2004 workshop to review ISNET data
,” in
Proceedings of the 22nd Conference on Severe Local Storms
, October 4–8, Hyannis, MA.
10.
Bedard
,
A. J.
,
Bartram
,
B. W.
,
Keane
,
A. N.
,
Welsh
,
D. C.
, and
Nishiyama
,
R. T.
(
2004b
). “
The infrasound network (ISNET): Background, design details, and display capabilities as an 88D adjunct tornado detection tool
,” in
Proceedings of the 22nd Conference on Severe Local Storms
, October 4–8, Hyannis, MA.
11.
Bedard
,
A. J.
, and
Georges
,
T. M.
(
2000
). “
Atmospheric infrasound
,”
Phys. Today
53
(
3
),
32
37
.
12.
Bendat
,
J. S.
, and
Piersol
,
A. G.
(
2000
).
Random Data: Analysis and Measurement Procedures
, 3rd ed. (
John Wiley & Sons
,
New York
),
457
477
.
13.
Blom
,
P.
,
Marcillo
,
O.
, and
Arrowsmith
,
S.
(
2016
). “
Analysis and modeling of infrasound from a four-stage rocket launch
,”
J. Acoust. Soc. Am.
139
(
6
),
3134
3138
.
14.
Bowman
,
H. S.
, and
Bedard
,
A. J.
(
1971
). “
Observations of infrasound and subsonic disturbances related to severe weather
,”
Geophys. J. Int.
26
,
215
242
.
15.
Brock
,
F. V.
,
Crawford
,
K. C.
,
Elliott
,
R. L.
,
Cuperus
,
G. W.
,
Stadler
,
S. J.
,
Johnson
,
H. L.
, and
Eilts
,
M. D.
(
1995
). “
The Oklahoma Mesonet: A technical overview
,”
J. Atmos. Ocean. Tech.
12
,
5
19
.
16.
Browning
,
K. A.
(
1965
). “
The evolution of tornadic storms
,”
J. Atmos. Sci.
22
,
664
668
.
17.
Cramer
,
O.
(
1993
). “
The variation of the specific heat ratio and the speed of sound in air with temperature, pressure, humidity, and CO2 concentration
,”
J. Acoust. Soc. Am.
93
(
5
),
2510
2516
.
18.
Dauchez
,
N.
,
Hayot
,
M.
, and
Denis
,
S.
(
2016
). “
Effectiveness of nonporous windscreens for infrasonic measurements
,”
J. Acoust. Soc. Am.
139
(
6
),
3177
3181
.
19.
Doviak
,
R. J.
, and
Zrnić
,
D. S.
(
2006
).
Doppler Radar and Weather Observations
, 2nd Ed. (
Dover Publications
,
New York
), pp.
562
.
20.
Dowling
,
D. R.
, and
Sabra
,
K. G.
(
2015
). “
Acoustic remote sensing
,”
Ann. Rev. Fluid Mech.
47
,
221
243
.
21.
Dumas
,
E. J.
,
Lee
,
T. R.
,
Buban
,
M.
, and
Baker
,
B.
(
2017
). “
Small unmanned aircraft system (sUAS) measurements during the 2017 Verification of the Origins of Rotation in Tornadoes Experiment Southeast (VORTEX-SE)
,” NOAA Technical Memorandum OAR-ARL-274, NOAA, Silver Spring, MD.
22.
Dunn
,
R. W.
,
Meredith
,
J. A.
,
Lamb
,
A. B.
, and
Kessler
,
E. G.
(
2016
). “
Detection of atmospheric infrasound with a ring laser interferometer
,”
J. Appl. Phys.
120
,
123109
.
23.
Elbing
,
B. R.
, and
Gaeta
,
R. J.
(
2016
). “
Integration of infrasonic sensing with UAS (invited)
,” in
The 8th Atmospheric and Space Environments Conference
, AIAA Aviation, AIAA2016-3581, Washington, DC (June 13-17) (doi:10.2514/6.2016-3581).
24.
Elbing
,
B. R.
,
Petrin
,
C. E.
, and
Van Den Broeke
,
M. S.
(
2018a
). “
Infrasound measurements from a tornado in Oklahoma
,”
Proc. Meet. Acoust.
33
(
1
),
0450003
.
25.
Elbing
,
B. R.
,
Petrin
,
C. E.
, and
Van Den Broeke
,
M. S.
(
2018b
). “
Monitoring infrasound from a tornado in Oklahoma
,”
J. Acoust. Soc. Am.
143
,
1808
.
26.
Few
,
A. A.
(
1985
). “
The production of lightning-associated infrasonic acoustic sources in thunderclouds
,”
J. Geophys. Res. Atmos.
90
(
D4
),
6175
6180
, .
27.
Frazier
,
W. G.
,
Talmadge
,
C.
,
Park
,
J.
,
Waxler
,
R.
, and
Assink
,
J.
(
2014
). “
Acoustic detection, tracking, and characterization of three tornadoes
,”
J. Acoust. Soc. Am.
135
(
4
),
1742
1751
.
28.
Georges
,
T. M.
(
1973
). “
Infrasound from convective storms: Examining the evidence
,”
Rev. Geophys.
11
(
3
),
571
594
, .
29.
Georges
,
T. M.
(
1976
). “
Infrasound from convective storms. Part II: A critique of source candidates
,” NOAA Technical Report ERL 380-WPL 49, NOAA, Silver Spring, MD.
30.
Georges
,
T. M.
, and
Greene
,
G. E.
(
1975
). “
Infrasound from convective storms. Part IV. Is it useful for storm warning?
,”
J. Appl. Meteorol.
14
(
7
),
1303
1316
.
31.
Goerke
,
V. H.
, and
Woodward
,
M. W.
(
1966
). “
Infrasonic observation of a severe weather system
,”
Mon. Weather Rev.
94
(
6
),
395
398
.
32.
Goudeau
,
B.
,
Knupp
,
K. R.
,
Frazier
,
W. G.
,
Waxler
,
R.
,
Talmadge
,
C.
, and
Hetzer
,
C.
(
2018
). “
An analysis of tornado-emitted infrasound during the VORTEX-SE field campaign
,” in
Proceedings of the 19th Symposium on Meteorological Observation and Instrumentation
, January 6–11, Austin, TX.
33.
Hart
,
D.
, and
McDonald
,
T.
(
2009
). “
Infrasound sensor and porous-hose filter evaluation results
,” in
Proceedings of the 2009 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies
, September 21, Tucson, AZ, pp.
735
741
.
34.
Hemingway
,
B.
,
Frazier
,
A. E.
,
Elbing
,
B. R.
, and
Jacob
,
J. D.
(
2017
). “
Vertical sampling scales for atmospheric boundary layer measurements from small unmanned aircraft systems (sUAS)
,”
Atmosphere
8
(
9
),
176
.
35.
Jacob
,
J. D.
,
Chilson
,
P. B.
,
Houston
,
A. L.
, and
Smith
,
S. W.
(
2018
). “
Considerations for atmospheric measurements with small unmanned aircraft systems
,”
Atmosphere
9
(
7
),
252
.
36.
Johnson
,
J. B.
, and
Ripepe
,
M.
(
2011
). “
Volcano infrasound: A review
,”
J. Volcanol. Geoth. Res.
206
,
61
69
.
37.
Jones
,
R. M.
, and
Georges
,
T. M.
(
1976
). “
Infrasound from convective storms. III. Propagation to the ionosphere
,”
J. Acoust. Soc. Am.
59
(
4
),
765
779
.
38.
Le Pichon
,
A.
,
Blanc
,
E.
, and
Hauchecorne
,
A.
(
2010
).
Infrasound Monitoring for Atmospheric Studies
, 1st ed. (
Springer
,
New York
).
39.
Le Pichon
,
A.
,
Herr
,
P.
,
Mialle
,
P.
,
Vergoz
,
J.
,
Brachet
,
N.
,
Garcés
,
M.
,
Drob
,
D.
, and
Ceranna
,
L.
(
2005
). “
Infrasound associated with 2004–2005 large Sumatra earthquakes and tsunami
,”
Geophys. Res. Lett.
32
,
L19802
, .
40.
Lee
,
T. R.
,
Buban
,
M.
,
Dumas
,
E.
, and
Baker
,
C. B.
(
2019
). “
On the use of rotary-wing aircraft to sample near-surface thermodynamic fields: Results from recent field campaigns
,”
Sensors
19
(
1
),
10
.
41.
Lyza
,
A. W.
, and
Knupp
,
K. R.
(
2018
). “
A background investigation of tornado activity across the Southern Cumberland Plateau terrain system of northeastern Alabama
,”
Mon. Weather Rev.
146
(
12
),
4261
4278
.
42.
Markowski
,
P.
, and
Richardson
,
Y.
(
2010
).
Mesoscale Meteorology in Midlatitudes
(
John Wiley & Sons
,
New York
).
43.
McDonald
,
J. A.
(
1974
). “
Naturally occurring atmospheric acoustical signals
,”
J. Acoust. Soc. Am.
56
(
2
),
338
351
.
44.
McPherson
,
R. A.
,
Fiebrich
,
C.
,
Crawford
,
K. C.
,
Elliott
,
R. L.
,
Kilby
,
J. R.
,
Grimsley
,
D. L.
,
Martinez
,
J. E.
,
Basara
,
J. B.
,
Illston
,
B. G.
,
Morris
,
D. A.
,
Kloesel
,
K. A.
,
Stadler
,
S. J.
,
Melvin
,
A. D.
,
Sutherland
,
A. J.
, and
Shrivastava
,
H.
(
2007
). “
Statewide monitoring of the mesoscale environment: A technical update on the Oklahoma Mesonet
,”
J. Atmos. Ocean. Technol.
24
,
301
321
.
45.
Mutschlecner
,
J. P.
, and
Whitaker
,
R. W.
(
2005
). “
Infrasound from earthquakes
,”
J. Geophys. Res.
110
,
D01108
, .
46.
Nicholls
,
M. E.
,
Pielke
,
R. A.
, and
Bedard
,
A. J.
(
2004
). “
Preliminary numerical simulations of infrasound generation processes by severe weather using a fully compressible numerical model
,” in
Proceedings of the 22nd Conference on Severe Local Storms
, October 4–8, Hyannis, MA.
47.
NOAA
(
2017
). “
NOAA NCEI Storm Event Database
,” Oklahoma/Payne Co./May 11, 2017/Tornado, NOAA, Silver Spring, MD.
48.
Noble
,
J. M.
, and
Tenney
,
S. M.
(
2003
). “
Detection of naturally occurring events from small aperture infrasound arrays
,” in
Proceedings of the Battlespace Atmospheric and Cloud Impacts on Military Operations Conference
, September 9–11, Monterey, CA.
49.
Ostashev
,
V. E.
,
Chunchuzov
,
I. P.
, and
Wilson
,
D. K.
(
2005
). “
Sound propagation through and scattering by internal gravity waves in a stably stratified atmosphere
,”
J. Acoust. Soc. Am.
118
(
6
),
3420
3429
.
50.
Pasko
,
V. P.
(
2009
). “
Mechanism of lightning-associated infrasonic pulses from thunderclouds
,”
J. Geophys. Res. Atmos.
114
(
D8
),
D08205
, .
51.
Pepyne
,
D. L.
, and
Klaiber
,
S.
(
2012
). “
Highlights from the 2011 CASA infrasound field experiment
,” in
Proceedings of the 92nd American Meteorological Society Annual Meeting
, January 22–26, New Orleans, LA.
52.
Pitre
,
K. M.
, and
Petculescu
,
A.
(
2019
). “
Porous domes as wind noise filters for infrasound sensing on Mars
,”
Planet. Space Sci.
167
,
33
41
.
53.
Powell
,
A.
(
1964
). “
Theory of vortex sound
,”
J. Acoust. Soc. Am.
36
,
177
195
.
54.
Prassner
,
J. E.
, and
Noble
,
J. M.
(
2004
). “
Acoustic energy measured from mesocyclone and tornadoes in June 2003
,” in
Proceedings of the 22nd Conference on Severe Local Storms
, October 4–8, Hyannis, MA.
55.
Rinehart
,
H. S.
(
2012
). “
Application of a blind source separation algorithm for the detection and tracking of tornado-generated infrasound emissions during the severe weather outbreak of 27 April 2011
,”
J. Acoust. Soc. Am.
132
,
2074
.
56.
Rinehart
,
H. S.
(
2018
). “
Direct detection of tornadoes using infrasound remote sensing: Assessment of capabilities through comparison with dual polarization radar and other direct detection measurements
,” General Atomics Final Progress Report, NOAA Grant No. NA160AR4590205, NOAA, Silver Springs, MD.
57.
Sabatini
,
R.
,
Marsden
,
O.
,
Bailly
,
C.
, and
Gainville
,
O.
(
2019
). “
Three-dimensional direct numerical simulation of infrasound propagation in the Earth's atmosphere
,”
J. Fluid Mech.
859
(
25
),
754
789
.
58.
Schecter
,
D. A.
(
2012
). “
A brief critique of a theory used to interpret the infrasound of tornadic thunderstorms
,”
Mon. Weather Rev.
140
(
7
),
2080
2089
.
59.
Schecter
,
D. A.
, and
Nicholls
,
M. E.
(
2010
). “
Generation of infrasound by evaporating hydrometeors in a cloud model
,”
J. Appl. Meteorol. Clim.
49
,
664
675
.
60.
Schecter
,
D. A.
,
Nicholls
,
M. E.
,
Persing
,
J.
,
Bedard
,
A. J.
, Jr.
, and
Pielke
,
R. A.
, Sr.
(
2008
). “
Infrasound emitted by tornado-like vortices: Basic theory and a numerical comparison to the acoustic radiation of a single-cell thunderstorm
,”
J. Atmos. Sci.
65
,
685
713
.
61.
Shams
,
Q. A.
,
Zuckerwar
,
A. J.
,
Burkett
,
C. G.
,
Weistroffer
,
G. R.
, and
Hugo
,
D. R.
(
2013
). “
Experimental investigation into infrasonic emissions from atmospheric turbulence
,”
J. Acoust. Soc. Am.
133
(
3
),
1269
1280
.
62.
Shams
,
Q. A.
,
Zuckerwar
,
A. J.
, and
Sealey
,
B. S.
(
2005
). “
Compact nonporous windscreen for infrasonic measurements
,”
J. Acoust. Soc. Am.
118
(
3
),
1335
1340
.
63.
Shang
,
C.
,
Teng
,
P.
,
Lyu
,
J.
,
Yang
,
J.
, and
Sun
,
H.
(
2019
). “
Infrasonic source altitude localization based on infrasound ray tracing propagation model
,”
J. Acoust. Soc. Am.
145
(
6
),
3805
3816
.
64.
Smith
,
S. W.
,
Chilson
,
P. B.
,
Houston
,
A. L.
, and
Jacob
,
J. D.
(
2017
). “
Catalyzing collaboration for multi-disciplinary UAS development with a flight campaign focused on meteorology and atmospheric physics
,” in
Proceedings of AIAA Information Systems—AIAA Infotech @ Aerospace
, January 9–13, Grapevine, TX, AIAA-2017-1156.
65.
Talmadge
,
C. L.
(
2018
). “
Wind noise reduction at infrasound frequencies using large domes
,”
J. Acoust. Soc. Am.
143
(
3
),
1808
.
66.
Talmadge
,
C.
, and
Waxler
,
R.
(
2016
). “
Infrasound from tornados: Theory, measurement, and prospects for their use in early warning systems
,”
Acoust. Today
12
(
1
),
43
51
.
67.
Tatom
,
F. B.
,
Knupp
,
K. R.
, and
Vitton
,
S. J.
(
1995
). “
Tornado detection based on seismic signal
,”
J. Appl. Meteorol.
34
,
572
582
.
68.
Threatt
,
A.
(
2016
). “
Investigation of natural and anthropomorphic sources of atmospheric infrasound
,” M.S. thesis,
Oklahoma State University
,
Stillwater, OK
.
69.
Van Den Broeke
,
M. S.
(
2017
). “
Polarimetric radar metrics related to tornado life cycles and intensity in supercell storms
,”
Mon. Weather Rev.
145
,
3671
3686
.
70.
Van Den Broeke
,
M. S.
,
Straka
,
J. M.
, and
Rasmussen
,
E. N.
(
2008
). “
Polarimetric radar observations at low levels during tornado life cycles in a small sample of classic Southern Plains supercells
,”
J. Appl. Meteorol. Clim.
47
,
1232
1247
.
71.
Wagner
,
T. J.
,
Klein
,
P. M.
, and
Turner
,
D. D.
(
2019
). “
A new generation of ground-based mobile platforms for active and passive profiling of the boundary layer
,”
Bull. Am. Meteorol. Soc.
100
(
1
),
137
153
.
72.
Waxler
,
R. M.
, and
Assink
,
J. D.
(
2017
). “
NCPAprop—A software package for infrasound propagation modeling
,”
J. Acoust. Soc. Am.
141
,
3627
.
73.
Waxler
,
R.
,
Evers
,
L. G.
,
Assink
,
J.
, and
Blom
,
P.
(
2015
). “
The stratospheric arrival pair in infrasound propagation
,”
J. Acoust. Soc. Am.
137
(
4
),
1846
1856
.
74.
Waxler
,
R.
, and
Gilbert
,
K. E.
(
2006
). “
The radiation of atmospheric microbaroms by ocean waves
,”
J. Acoust. Soc. Am.
119
(
5
),
2651
2664
.
75.
Young
,
J. M.
, and
Greene
,
G. E.
(
1982
). “
Anomalous infrasound generated by the Alaskan earthquake of 28 March 1964
,”
J. Acoust. Soc. Am.
71
(
2
),
334
339
.
76.
Zuckerwar
,
A. J.
, and
Ash
,
R. L.
(
2006
). “
Variational approach to the volume viscosity of fluids
,”
Phys. Fluids
18
,
047101
.
77.
Zuckerwar
,
A. J.
(
2010
). “
Theory of compact nonporous windscreens for infrasonic measurements
,”
J. Acoust. Soc. Am.
127
(
6
),
3327
3334
.
You do not currently have access to this content.