To elucidate the selection mechanism of a predominant mode in acoustic radiation from the recorder, the jet oscillations predicted by direct aeroacoustic simulations are analyzed based on a proposed formula for hydrodynamic and acoustic jet displacements. The displacements are well represented by the formula, taking into account the non-zero initial amplitude around the windway exit and variations of oscillation center with streamwise position for jet displacement. The analysis is applied to the jet oscillations in two different recorders with a straight- and an arch-shaped windway, where the shift of the predominant mode from the first to the second mode occurs for the straight-shaped recorder at a lower jet velocity compared to the arch-shaped recorder. The analytical results present the influence of the recorder shape on the amplification rate of the hydrodynamic jet displacement, the acoustic feedback effects and the phase relation between the hydrodynamic jet displacement and acoustic pressure in the resonator, along with the jet offset to the edge. Compared to the arch-shaped recorder, the convex curve of the amplification rate with the non-dimensional frequency based on the windway height for the straight-shaped recorder is located in the higher-frequency region, which contributes to the predominance of the higher mode.

1.
B.
Fabre
,
J.
Gilbert
,
A.
Hirschberg
, and
X.
Pelorson
, “
Aeroacoustics of musical instruments
,”
Ann. Rev. Fluid Mech.
44
,
1
25
(
2012
).
2.
L.
Rayleigh
(J. W. Strutt),
The Theory of Sound
(
Dover
,
New York
,
1945
), Vol.
2
, Chap. 21.
3.
A.
Michalke
, “
On spatially growing disturbances in an inviscid shear layer
,”
J. Fluid Mech.
23
,
521
544
(
1965
).
4.
P.
Freymuth
, “
On transition in a separated laminar boundary layer
,”
J. Fluid Mech.
25
,
683
704
(
1966
).
5.
N. H.
Fletcher
, “
Sound production by organ flue pipes
,”
J. Acoust. Soc. Am.
60
(
4
),
926
936
(
1976
).
6.
N. H.
Fletcher
and
S.
Thwaites
, “
Wave propagation on an acoustically perturbed jet
,”
Acustica
42
(
5
),
323
334
(
1979
).
7.
M. P.
Verge
, “
Aeroacoustics of confined jets: With application to the physical modeling of recorder-like instruments
,” Ph.D. thesis,
Eindhoven University of Technology
,
1995
.
8.
P.
de la Cuadra
, “
The sound of oscillating air jets: Physics, modeling and simulation in flute-like instruments
,” Ph.D. thesis,
Stanford University
,
2005
.
9.
S.
Yoshikawa
,
H.
Tashiro
, and
Y.
Sakamoto
, “
Experimental examination of vortex-sound generation in an organ pipe: A proposal of jet vortex-layer formation model
,”
J. Sound Vib.
331
,
2558
2577
(
2012
).
10.
N. H.
Fletcher
and
T. D.
Rossing
,
The Physics of Musical Instruments
, 2nd ed. (
Springer Verlag
,
New York
,
1998
).
11.
J. W.
Coltman
, “
Sounding mechanism of the flute and organ pipe
,”
J. Acoust. Soc. Am.
44
,
983
992
(
1968
).
12.
J. W.
Coltman
, “
Jet drive mechanism in edge tones and organ pipes
,”
J. Acoust. Soc. Am.
60
,
725
733
(
1976
).
13.
S. A.
Elder
, “
On the mechanism of sound production in organ pipes
,”
J. Acoust. Soc. Am.
54
,
1554
1564
(
1973
).
14.
N. H.
Fletcher
, “
Jet drive mechanism in organ pipes
,”
J. Acoust. Soc. Am.
60
,
481
483
(
1976
).
15.
L.
Cremer
and
H.
Ising
, “
Die selbsterregten Schwingungen von Orgelpfeifen” (“The self-excited vibrations of organ pipes)
,”
Acustica
19
(
3
),
143
153
(
1967
).
16.
S.
Yoshikawa
and
J.
Saneyoshi
, “
Feedback excitation mechanism in organ pipes
,”
J. Acoust. Soc. Jpn. (E)
1
,
175
191
(
1980
).
17.
C.
Ségoufin
,
B.
Fabre
,
M. P.
Verge
,
A.
Hirschberg
, and
A. P. J.
Wijnands
, “
experimental study of the influence of the mouth geometry on sound production in a recorder-like instrument: Windway length and chamfers
,”
Acust. Acta Acust.
86
,
649
661
(
2000
).
18.
N.
Giordano
, “
Simulation studies of a recorder in three dimensions
,”
J. Acoust. Soc. Am.
135
(
2
),
906
916
(
2014
).
19.
N. H.
Fletcher
and
Lorna M.
Douglas
, “
Harmonic generation in organ pipes, recorders, and flutes
,”
J. Acoust. Soc. Am.
68
(
3
),
767
771
(
1980
).
20.
S.
Yoshikawa
, “
Harmonic generation mechanism in organ pipes
,”
J. Acoust. Soc. Jpn. (E)
5
,
1
,
17
29
(
1984
).
21.
H.
Yokoyama
,
R.
Hamasuna
,
A.
Miki
,
H.
Onitsuka
, and
A.
Iida
, “
Direct aeroacoustic simulation related with mode change in a recorder
,” in
Proceedings of European Congress on Computational Methods in Applied Sciences and Engineering
(
2016
), pp.
1315
1324
.
22.
H.
Yokoyama
,
A.
Miki
,
H.
Onitsuka
, and
A.
Iida
, “
Direct numerical simulation of fluid−acoustic interactions in a recorder with tone holes
,”
J. Acoust. Soc. Am.
138
,
858
873
(
2015
).
23.
P.
Angot
,
C. H.
Bruneau
, and
P.
Frabrie
, “
A penalization method to take into account obstacles in viscous flows
,”
Numer. Math.
81
,
497
520
(
1999
).
24.
Q.
Liu
and
O. V.
Vasilyev
, “
A Brinkman penalization method for compressible flows in complex geometries
,”
J. Comp. Phys.
227
,
946
966
(
2007
).
25.
R.
Mittal
and
G.
Iaccarino
, “
Immersed boundary methods
,”
Annu. Rev. Fluid Mech.
37
,
239
261
(
2005
).
26.
S. K.
Lele
, “
Compact finite difference schemes with spectral-like resolution
,”
J. Comp. Phys.
103
,
16
19
(
1992
).
27.
A.
Jameson
and
T. J.
Baker
, “
Solution of the Euler equations for complex configurations
,” AIAA Paper 83-1929.
28.
K.
Matsuura
and
C.
Kato
, “
Large-eddy simulation of compressible transitional flows in a low-pressure turbine cascade
,”
AIAA J.
45
,
442
457
(
2007
).
29.
D. V.
Gaitonde
and
M. R.
Visbal
, “
Pade-type higher-order boundary filters for the Navier-Stokes equations
,”
AIAA J.
38
,
2103
2112
(
2000
).
30.
T.
Colonius
,
T. S. K.
Lele
, and
P.
Moin
, “
Boundary conditions for direct computation of aerodynamic sound generation
,”
AIAA J.
31
(
9
),
1574
1582
(
1993
).
31.
K. W.
Thompson
, “
Time dependent boundary conditions for hyperbolic systems
,”
J. Comp. Phys.
68
,
1
24
(
1987
).
32.
T. J.
Poinsot
and
S. K.
Lele
, “
Boundary conditions for direct simulations of compressible viscous flows
,”
J. Comp. Phys.
101
,
104
129
(
1992
).
33.
J. W.
Kim
and
D. J.
Lee
, “
Generalized characteristic boundary conditions for computational aeroacoustics
,”
AIAA J.
38
(
11
),
2040
2049
(
2000
).
34.
S.
Yoshikawa
, “
Jet-wave amplification in organ pipes
,”
J. Acoust. Soc. Am.
103
(
5
),
2706
2717
(
1998
).
35.
G. E.
Mattingly
and
W. O.
Criminale
, “
Disturbance characteristics in a plane jet
,”
Phys. Fluids
14
(
11
),
2258
2264
(
1971
).
You do not currently have access to this content.