The effect of on-site damping on breather arrest, localization, and non-reciprocity in strongly nonlinear lattices is analytically and numerically studied. Breathers are localized oscillatory wavepackets formed by nonlinearity and dispersion. Breather arrest refers to breather disintegration over a finite “penetration depth” in a dissipative lattice. First, a simplified system of two nonlinearly coupled oscillators under impulsive excitation is considered. The exact relation between the number of beats (energy exchanges between oscillators), the excitation magnitude, and the on-site damping is derived. Then, these analytical results are correlated to those of the semi-infinite extension of the simplified system, where breather penetration depth is governed by a similar law to that of the finite beats in the simplified system. Finally, motivated by the experimental results of Bunyan, Moore, Mojahed, Fronk, Leamy, Tawfick, and Vakakis [Phys. Rev. E 97, 052211 (2018)], breather arrest, localization, and acoustic non-reciprocity in a non-symmetric, dissipative, strongly nonlinear lattice are studied. The lattice consists of repetitive cells of linearly grounded large-scale particles nonlinearly coupled to small-scale ones, and linear intra-cell coupling. Non-reciprocity in this lattice yields either energy localization or breather arrest depending on the position of excitation. The nonlinear acoustics governing non-reciprocity, and the surprising effects of existence of linear components in the coupling nonlinear stiffnesses, in the acoustics, are investigated.

1.
R. S.
MacKay
, “
Discrete breathers: Classical and quantum
,”
Phys. A: Stat. Mech. Appl.
288
,
174
198
(
2000
).
2.
S.
Aubry
and
T.
Cretegny
, “
Mobility and reactivity of discrete breathers
,” arXiv:cond-mat/9712046 (
1997
).
3.
S.
Flach
and
K.
Kladko
, “
Moving discrete breathers?
,”
Phys. D: Nonl. Phenom.
127
,
61
72
(
1999
).
4.
S. M.
Robert
and
S.
Jacques-Alexandre
, “
Effective Hamiltonian for travelling discrete breathers
,”
J. Phys. A: Math. Gen.
35
,
3985
(
2002
).
5.
M. A.
Hasan
,
Y.
Starosvetsky
,
A. F.
Vakakis
, and
L. I.
Manevitch
, “
Nonlinear targeted energy transfer and macroscopic analog of the quantum Landau–Zener effect in coupled granular chains
,”
Phys. D: Nonl. Phenom.
252
,
46
58
(
2013
).
6.
G.
James
, “
Nonlinear waves in Newton's cradle and the discrete p-Schrödinger equation
,”
Math. Models Meth. Appl. Sci.
21
,
2335
2377
(
2011
).
7.
Y.
Zhang
,
K. J.
Moore
,
D. M.
McFarland
, and
A. F.
Vakakis
, “
Targeted energy transfers and passive acoustic wave redirection in a two-dimensional granular network under periodic excitation
,”
J. Appl. Phys.
118
,
234901
(
2015
).
8.
P. G.
Kevrekidis
, in
The Discrete Nonlinear Schrödinger Equation: Mathematical Analysis, Numerical Computations and Physical Perspectives
(
Springer
,
Berlin
,
2009
), pp.
3
9
.
9.
M.
Toda
,
Theory of Nonlinear Lattices
(
Springer-Verlag
,
New York
,
1989
).
10.
M.
Ablowitz
and
J.
Ladik
, “
Nonlinear differential–difference equations and Fourier analysis
,”
J. Math. Phys.
17
,
1011
1018
(
1976
).
11.
O.
Bang
and
M.
Peyrard
, “
High order breather solutions to a discrete nonlinear Klein-Gordon model
,”
Phys. D: Nonl. Phenom.
81
,
9
22
(
1995
).
12.
G.
James
and
Y.
Sire
, “
Travelling breathers with exponentially small tails in a chain of nonlinear oscillators
,”
Commun. Math. Phys.
257
,
51
85
(
2005
).
13.
Y.
Sire
and
G.
James
, “
Travelling breathers in Klein–Gordon chains
,”
C. R. Math.
338
,
661
666
(
2004
).
14.
Y.
Sire
and
G.
James
, “
Numerical computation of travelling breathers in Klein–Gordon chains
,”
Phys. D: Nonl. Phenom.
204
,
15
40
(
2005
).
15.
J.
Bunyan
,
K. J.
Moore
,
A.
Mojahed
,
M. D.
Fronk
,
M.
Leamy
,
S.
Tawfick
, and
A. F.
Vakakis
, “
Acoustic nonreciprocity in a lattice incorporating nonlinearity, asymmetry, and internal scale hierarchy: Experimental study
,”
Phys. Rev. E
97
,
052211
(
2018
).
16.
H. B. G.
Casimir
, “
On Onsager's principle of microscopic reversibility
,”
Rev. Mod. Phys.
17
,
343
(
1945
).
17.
L.
Onsager
, “
Reciprocal relations in irreversible processes. II
,”
Phys. Rev.
38
,
2265
(
1931
).
18.
L.
Onsager
, “
Reciprocal relations in irreversible processes. I
,”
Phys. Rev.
37
,
405
(
1931
).
19.
K. L.
Tsakmakidis
,
L.
Shen
,
S. A.
Schulz
,
X.
Zheng
,
J.
Upham
,
X.
Deng
,
H.
Altug
,
A. F.
Vakakis
, and
R. W.
Boyd
, “
Breaking Lorentz reciprocity to overcome the time-bandwidth limit in physics and engineering
,”
Science
356
,
1260
1264
(
2017
).
20.
B.-I.
Popa
and
S. A.
Cummer
, “
Non-reciprocal and highly nonlinear active acoustic metamaterials
,”
Nat. Commun.
5
,
3398
(
2014
).
21.
S. A.
Cummer
, “
Selecting the direction of sound transmission
,”
Science
343
,
495
496
(
2014
).
22.
R.
Fleury
,
D. L.
Sounas
,
C. F.
Sieck
,
M. R.
Haberman
, and
A.
Alù
, “
Sound isolation and giant linear nonreciprocity in a compact acoustic circulator
,”
Science
343
,
516
519
(
2014
).
23.
R.
Fleury
,
D. L.
Sounas
, and
A.
Alù
, “
Subwavelength ultrasonic circulator based on spatiotemporal modulation
,”
Phys. Rev. B
91
,
174306
(
2015
).
24.
B.
Liang
,
X. S.
Guo
,
J.
Tu
,
D.
Zhang
, and
J. C.
Cheng
, “
An acoustic rectifier
,”
Nat. Mater.
9
,
989
992
(
2010
).
25.
N.
Boechler
,
G.
Theocharis
, and
C.
Daraio
, “
Bifurcation-based acoustic switching and rectification
,”
Nat. Mater.
10
,
665
668
(
2011
).
26.
J.
Zhang
,
B.
Peng
,
Ş. K.
Özdemir
,
Y.-x.
Liu
,
H.
Jing
,
X.-y.
,
Y.-l.
Liu
,
L.
Yang
, and
F.
Nori
, “
Giant nonlinearity via breaking parity-time symmetry: A route to low-threshold phonon diodes
,”
Phys. Rev. B
92
,
115407
(
2015
).
27.
F.
Li
,
P.
Anzel
,
J.
Yang
,
P. G.
Kevrekidis
, and
C.
Daraio
, “
Granular acoustic switches and logic elements
,”
Nat. Commun.
5
,
5311
(
2014
).
28.
M.
Maldovan
, “
Sound and heat revolutions in phononics
,”
Nature
503
,
209
217
(
2013
).
29.
D. E.
Panayotoukanos
,
N. D.
Panayotounakou
, and
A. F.
Vakakis
, “
On the solution of the unforced damped duffing oscillator with no linear stiffness term
,”
Nonl. Dyn.
28
,
1
16
(
2002
).
30.
M. D.
Fronk
,
S.
Tawfick
,
C.
Daraio
,
A. F.
Vakakis
, and
M. J.
Leamy
, “
Non-reciprocity in structures with nonlinear internal hierarchy and asymmetry
,” V008T12A023 (
2017
).
31.
K. J.
Moore
,
J.
Bunyan
,
S.
Tawfick
,
O. V.
Gendelman
,
S.
Li
,
M.
Leamy
, and
A. F.
Vakakis
, “
Nonreciprocity in the dynamics of coupled oscillators with nonlinearity, asymmetry, and scale hierarchy
,”
Phys. Rev. E
97
,
012219
(
2018
).
32.
A. F.
Vakakis
,
O. V.
Gendelman
,
L. A.
Bergman
,
D. M.
McFarland
,
G.
Kerschen
, and
Y. S.
Lee
,
Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems
(
Springer
,
Dordrecht, the Netherlands
,
2008
).
33.
G.
Kerschen
,
M.
Peeters
,
J. C.
Golinval
, and
A. F.
Vakakis
, “
Nonlinear normal modes, Part I: A useful framework for the structural dynamicist
,”
Mech. Syst. Sign. Process.
23
,
170
194
(
2009
).
34.
M.
Peeters
,
R.
Viguié
,
G.
Sérandour
,
G.
Kerschen
, and
J. C.
Golinval
, “
Nonlinear normal modes, Part II: Toward a practical computation using numerical continuation techniques
,”
Mech. Syst. Sign. Process.
23
,
195
216
(
2009
).
35.
K. R.
Jayaprakash
,
Y.
Starosvetsky
,
A. F.
Vakakis
,
M.
Peeters
, and
G.
Kerschen
, “
Nonlinear normal modes and band zones in granular chains with no pre-compression
,”
Nonl. Dyn.
63
,
359
385
(
2011
).
You do not currently have access to this content.