Acoustic imaging methods often ignore multiple scattering. This leads to false images in cases where multiple scattering is strong. Marchenko imaging has recently been introduced as a data-driven way to deal with internal multiple scattering. Given the increasing interest in non-reciprocal materials, both for acoustic and electromagnetic applications, a modification to the Marchenko method is proposed for imaging such materials. A unified wave equation is formulated for non-reciprocal materials, exploiting the similarity between acoustic and electromagnetic wave phenomena. This unified wave equation forms the basis for deriving reciprocity theorems that interrelate wave fields in a non-reciprocal medium and its complementary version. Next, these theorems are reformulated for downgoing and upgoing wave fields. From these decomposed reciprocity theorems, representations of the Green's function inside the non-reciprocal medium are derived in terms of the reflection response at the surface and focusing functions inside the medium and its complementary version. These representations form the basis for deriving a modified version of the Marchenko method to retrieve the wave field inside a non-reciprocal medium and to form an image, free from artefacts related to multiple scattering. The proposed method is illustrated at the hand of the numerically modeled reflection response of a horizontally layered medium.

1.
J. F.
Claerbout
, “
Toward a unified theory of reflector mapping
,”
Geophysics
36
,
467
481
(
1971
).
2.
R. H.
Stolt
, “
Migration by Fourier transform
,”
Geophysics
43
,
23
48
(
1978
).
3.
A. J.
Berkhout
and
D. W.
van Wulfften Palthe
, “
Migration in terms of spatial deconvolution
,”
Geophys. Prosp.
27
,
261
291
(
1979
).
4.
E. G.
Williams
and
J. D.
Maynard
, “
Holographic imaging without the wavelength resolution limit
,”
Phys. Rev. Lett.
45
,
554
557
(
1980
).
5.
A. J.
Devaney
, “
A filtered backpropagation algorithm for diffraction tomography
,”
Ultrasonic Imag.
4
,
336
350
(
1982
).
6.
N.
Bleistein
and
J. K.
Cohen
, “
Velocity inversion—Present status, new directions
,”
Geophysics
47
,
1497
1511
(
1982
).
7.
J. D.
Maynard
,
E. G.
Williams
, and
Y.
Lee
, “
Nearfield acoustic holography: I. Theory of generalized holography and the development of NAH
,”
J. Acoust. Soc. Am.
78
,
1395
1413
(
1985
).
8.
K. J.
Langenberg
,
M.
Berger
,
T.
Kreutter
,
K.
Mayer
, and
V.
Schmitz
, “
Synthetic aperture focusing technique signal processing
,”
NDT Int.
19
,
177
189
(
1986
).
9.
G. A.
McMechan
, “
Migration by extrapolation of time-dependent boundary values
,”
Geophys. Prosp.
31
,
413
420
(
1983
).
10.
C.
Esmersoy
and
M.
Oristaglio
, “
Reverse-time wave-field extrapolation, imaging, and inversion
,”
Geophysics
53
,
920
931
(
1988
).
11.
M. L.
Oristaglio
, “
An inverse scattering formula that uses all the data
,”
Inverse Probl.
5
,
1097
1105
(
1989
).
12.
S. J.
Norton
, “
Annular array imaging with full-aperture resolution
,”
J. Acoust. Soc. Am.
92
,
3202
3206
(
1992
).
13.
S. F.
Wu
, “
Hybrid near-field acoustic holography
,”
J. Acoust. Soc. Am.
115
,
207
217
(
2004
).
14.
C.
Lindsey
and
D. C.
Braun
, “
Principles of seismic holography for diagnostics of the shallow subphotosphere
,”
Astrophys. J. Suppl. Series
155
,
209
225
(
2004
).
15.
J.
Etgen
,
S. H.
Gray
, and
Y.
Zhang
, “
An overview of depth imaging in exploration geophysics
,”
Geophysics
74
,
WCA5
WCA17
(
2009
).
16.
D. J.
Verschuur
,
A. J.
Berkhout
, and
C. P. A.
Wapenaar
, “
Adaptive surface-related multiple elimination
,”
Geophysics
57
,
1166
1177
(
1992
).
17.
P. M.
Carvalho
,
A. B.
Weglein
, and
R. H.
Stolt
, “
Nonlinear inverse scattering for multiple suppression: Application to real data, Part 1
,” in
SEG, Expanded Abstracts
(
1992
), pp.
1093
1095
.
18.
R. G.
van Borselen
,
J. T.
Fokkema
, and
P. M.
van den Berg
, “
Removal of surface-related wave phenomena—The marine case
,”
Geophysics
61
,
202
210
(
1996
).
19.
J.
Biersteker
, “
MAGIC: Shell's surface multiple attenuation technique
,” in
SEG, Expanded Abstracts
(
2001
),
1301
1304
.
20.
A.
Pica
,
G.
Poulain
,
B.
David
,
M.
Magesan
,
S.
Baldock
,
T.
Weisser
,
P.
Hugonnet
, and
P.
Herrmann
, “
3D surface-related multiple modeling
,”
Leading Edge
24
,
292
296
(
2005
).
21.
B.
Dragoset
,
E.
Verschuur
,
I.
Moore
, and
R.
Bisley
, “
A perspective on 3D surface-related multiple elimination
,”
Geophysics
75
,
75A245
75A261
(
2010
).
22.
A. B.
Weglein
,
F. A.
Gasparotto
,
P. M.
Carvalho
, and
R. H.
Stolt
, “
An inverse-scattering series method for attenuating multiples in seismic reflection data
,”
Geophysics
62
,
1975
1989
(
1997
).
23.
F.
Ten Kroode
, “
Prediction of internal multiples
,”
Wave Motion
35
,
315
338
(
2002
).
24.
A. B.
Weglein
,
F. V.
Araújo
,
P. M.
Carvalho
,
R. H.
Stolt
,
K. H.
Matson
,
R. T.
Coates
,
D.
Corrigan
,
D. J.
Foster
,
S. A.
Shaw
, and
H.
Zhang
, “
Inverse scattering series and seismic exploration
,”
Inverse Probl.
19
,
R27
R83
(
2003
).
25.
A. J.
Berkhout
, “
Review paper: An outlook on the future of seismic imaging, Part II: Full-Wavefield Migration
,”
Geophys. Prosp.
62
,
931
949
(
2014
).
26.
M.
Davydenko
and
D. J.
Verschuur
, “
Full-wavefield migration: Using surface and internal multiples in imaging
,”
Geophys. Prosp.
65
,
7
21
(
2017
).
27.
J. H.
Rose
, “ 
‘Single-sided’ focusing of the time-dependent Schrödinger equation
,”
Phys. Rev. A
65
,
012707
(
2001
).
28.
J. H.
Rose
, “ 
‘Single-sided’ autofocusing of sound in layered materials
,”
Inverse Probl.
18
,
1923
1934
(
2002
).
29.
F.
Broggini
and
R.
Snieder
, “
Connection of scattering principles: A visual and mathematical tour
,”
Eur. J. Phys.
33
,
593
613
(
2012
).
30.
K.
Wapenaar
,
F.
Broggini
, and
R.
Snieder
, “
Creating a virtual source inside a medium from reflection data: Heuristic derivation and stationary-phase analysis
,”
Geophys. J. Int.
190
,
1020
1024
(
2012
).
31.
K.
Wapenaar
,
J.
Thorbecke
,
J.
van der Neut
,
F.
Broggini
,
E.
Slob
, and
R.
Snieder
, “
Green's function retrieval from reflection data, in absence of a receiver at the virtual source position
,”
J. Acoust. Soc. Am.
135
,
2847
2861
(
2014
).
32.
F.
Broggini
,
R.
Snieder
, and
K.
Wapenaar
, “
Data-driven wavefield focusing and imaging with multidimensional deconvolution: Numerical examples for reflection data with internal multiples
,”
Geophysics
79
,
WA107
WA115
(
2014
).
33.
J.
Behura
,
K.
Wapenaar
, and
R.
Snieder
, “
Autofocus imaging: Image reconstruction based on inverse scattering theory
,”
Geophysics
79
,
A19
A26
(
2014
).
34.
G. A.
Meles
,
K.
Löer
,
M.
Ravasi
,
A.
Curtis
, and
C. A.
da Costa Filho
, “
Internal multiple prediction and removal using Marchenko autofocusing and seismic interferometry
,”
Geophysics
80
,
A7
A11
(
2015
).
35.
J.
van der Neut
,
I.
Vasconcelos
, and
K.
Wapenaar
, “
On Green's function retrieval by iterative substitution of the coupled Marchenko equations
,”
Geophys. J. Int.
203
,
792
813
(
2015
).
36.
J.
van der Neut
and
K.
Wapenaar
, “
Adaptive overburden elimination with the multidimensional Marchenko equation
,”
Geophysics
81
,
T265
T284
(
2016
).
37.
J.
Thorbecke
,
E.
Slob
,
J.
Brackenhoff
,
J.
van der Neut
, and
K.
Wapenaar
, “
Implementation of the Marchenko method
,”
Geophysics
82
,
WB29
WB45
(
2017
).
38.
J.
Van der Neut
,
M.
Ravasi
,
Y.
Liu
, and
I.
Vasconcelos
, “
Target-enclosed seismic imaging
,”
Geophysics
82
,
Q53
Q66
(
2017
).
39.
S.
Singh
,
R.
Snieder
,
J.
van der Neut
,
J.
Thorbecke
,
E.
Slob
, and
K.
Wapenaar
, “
Accounting for free-surface multiples in Marchenko imaging
,”
Geophysics
82
,
R19
R30
(
2017
).
40.
C.
Mildner
,
F.
Broggini
,
J. O. A.
Robertsson
,
D. J.
van Manen
, and
S.
Greenhalgh
, “
Target-oriented velocity analysis using Marchenko-redatumed data
,”
Geophysics
82
,
R75
R86
(
2017
).
41.
P.
Elison
,
D. J.
van Manen
,
J. O. A.
Robertsson
,
M. S.
Dukalski
, and
K.
de Vos
, “
Marchenko-based immersive wave simulation
,”
Geophys. J. Int.
215
,
1118
1131
(
2018
).
42.
M.
Ravasi
,
I.
Vasconcelos
,
A.
Kritski
,
A.
Curtis
,
C. A.
da Costa Filho
, and
G. A.
Meles
, “
Target-oriented Marchenko imaging of a North Sea field
,”
Geophys. J. Int.
205
,
99
104
(
2016
).
43.
M.
Ravasi
, “
Rayleigh-Marchenko redatuming for target-oriented, true-amplitude imaging
,”
Geophysics
82
,
S439
S452
(
2017
).
44.
M.
Staring
,
R.
Pereira
,
H.
Douma
,
J.
van der Neut
, and
K.
Wapenaar
, “
Source-receiver Marchenko redatuming on field data using an adaptive double-focusing method
,”
Geophysics
83
,
S579
S590
(
2018
).
45.
J.
Brackenhoff
,
J.
Thorbecke
, and
K.
Wapenaar
, “
Monitoring induced distributed double-couple sources using Marchenko-based virtual receivers
,”
Solid Earth
10
, in press (
2019
).
46.
K.
Wapenaar
,
J.
Brackenhoff
,
J.
Thorbecke
,
J.
van der Neut
,
E.
Slob
, and
E.
Verschuur
, “
Virtual acoustics in inhomogeneous media with single-sided access
,”
Sci. Rep.
8
,
2497
(
2018
).
47.
T.
Cui
,
T. S.
Becker
,
D.-J.
van Manen
,
J. E.
Rickett
, and
I.
Vasconcelos
, “
Marchenko redatuming in a dissipative medium: Numerical and experimental implementation
,”
Phys. Rev. Appl.
10
,
044022
(
2018
).
48.
J. R.
Willis
, “
Effective constitutive relations for waves in composites and metamaterials
,”
Proc. R. Soc. A
467
,
1865
1879
(
2011
).
49.
C.
He
,
M. H.
Lu
,
X.
Heng
,
L.
Feng
, and
Y. F.
Chen
, “
Parity-time electromagnetic diodes in a two-dimensional nonreciprocal photonic crystal
,”
Phys. Rev. B
83
,
075117
(
2011
).
50.
A. G.
Ardakani
, “
Nonreciprocal electromagnetic wave propagation in one-dimensional ternary magnetized plasma photonic crystals
,”
J. Opt. Soc. Am. B
31
,
332
339
(
2014
).
51.
J. R.
Willis
, “
The construction of effective relations for waves in a composite
,”
C. R. Mecan.
340
,
181
192
(
2012
).
52.
A. N.
Norris
,
A. L.
Shuvalov
, and
A. A.
Kutsenko
, “
Analytical formulation of three-dimensional dynamic homogenization for periodic elastic systems
,”
Proc. R. Soc. A
468
,
1629
1651
(
2012
).
53.
Z.
Gu
,
J.
Hu
,
B.
Liang
,
X.
Zou
, and
J.
Cheng
, “
Broadband non-reciprocal transmission of sound with invariant frequency
,”
Sci. Rep.
6
,
19824
(
2016
).
54.
G.
Trainiti
and
M.
Ruzzene
, “
Non-reciprocal elastic wave propagation in spatiotemporal periodic structures
,”
New J. Phys.
18
,
083047
(
2016
).
55.
H.
Nassar
,
H.
Chen
,
A. N.
Norris
,
M. R.
Haberman
, and
G. L.
Huang
, “
Non-reciprocal wave propagation in modulated elastic metamaterials
,”
Proc. R. Soc. A
473
,
20170188
(
2017
).
56.
H.
Nassar
,
X. C.
Xu
,
A. N.
Norris
, and
G. L.
Huang
, “
Modulated phononic crystals: Non-reciprocal wave propagation and Willis materials
,”
J. Mech. Phys. Solids
101
,
10
29
(
2017
).
57.
M. A.
Attarzadeh
and
M.
Nouh
, “
Non-reciprocal elastic wave propagation in 2D phononic membranes with spatiotemporally varying material properties
,”
J. Sound Vib.
422
,
264
277
(
2018
).
58.
J. T.
Fokkema
and
P. M.
van den Berg
,
Seismic Applications of Acoustic Reciprocity
(
Elsevier
,
Amsterdam
,
1993
), Chap. 5.
59.
A. T.
de Hoop
,
Handbook of Radiation and Scattering of Waves
(
Academic Press
,
London
,
1995
), Chaps. 7, 15, and 28.
60.
J. D.
Achenbach
,
Reciprocity in Elastodynamics
(
Cambridge University Press
,
Cambridge
,
2003
), Chaps. 4 and 6.
61.
J. A.
Kong
, “
Theorems of bianisotropic media
,”
Proc. IEEE
60
,
1036
1046
(
1972
).
62.
R. R.
Birss
and
R. G.
Shrubsall
, “
The propagation of EM waves in magnetoelectric crystals
,”
Philos. Mag.
15
,
687
700
(
1967
).
63.
I. V.
Lindell
,
A. H.
Sihvola
, and
K.
Suchy
, “
Six-vector formalism in electromagnetics of bi-anisotropic media
,”
J. Electron. Waves Appl.
9
,
887
903
(
1995
).
64.
C.
Altman
and
K.
Suchy
,
Reciprocity, Spatial Mapping and Time Reversal in Electromagnetics
(
Kluwer
,
Dordrecht
,
1991
), Chap. 3.
65.
E.
Slob
and
K.
Wapenaar
, “
Retrieving the Green's function from cross correlation in a bianisotropic medium
,”
Prog. Electromagn. Res.
93
,
255
274
(
2009
).
66.
L. M.
Lyamshev
, “
On certain integral relations in the acoustics of a moving medium
,”
Dokl. Akad. Nauk
138
,
575
578
(
1961
), available at http://mi.mathnet.ru/eng/dan/v138/i3/p575.
67.
O. A.
Godin
, “
Reciprocity and energy theorems for waves in a compressible inhomogeneous moving fluid
,”
Wave Motion
25
,
143
167
(
1997
).
68.
K.
Wapenaar
and
J.
Fokkema
, “
Reciprocity theorems for diffusion, flow and waves
,”
J. Appl. Mech.
71
,
145
150
(
2004
).
69.
C. P. A.
Wapenaar
and
A. J.
Berkhout
,
Elastic Wave Field Extrapolation
(
Elsevier
,
Amsterdam
,
1989
), Chap. 3 and  Appendix B.
70.
J. P.
Corones
,
M. E.
Davison
, and
R. J.
Krueger
, “
Direct and inverse scattering in the time domain via invariant imbedding equations
,”
J. Acoust. Soc. Am.
74
,
1535
1541
(
1983
).
71.
L.
Fishman
,
J. J.
McCoy
, and
S. C.
Wales
, “
Factorization and path integration of the Helmholtz equation: Numerical algorithms
,”
J. Acoust. Soc. Am.
81
,
1355
1376
(
1987
).
72.
L.
Fishman
, “
One-way propagation methods in direct and inverse scalar wave propagation modeling
,”
Radio Sci.
28
,
865
876
, (
1993
).
73.
M. V.
de Hoop
, “
Directional decomposition of transient acoustic wave fields
,” Ph.D. thesis,
Delft University of Technology
,
Delft, The Netherlands
(
1992
).
74.
M. V.
de Hoop
, “
Generalization of the Bremmer coupling series
,”
J. Math. Phys.
37
,
3246
3282
(
1996
).
75.
C. P. A.
Wapenaar
, “
Reciprocity theorems for two-way and one-way wave vectors: A comparison
,”
J. Acoust. Soc. Am.
100
,
3508
3518
(
1996
).
76.
A. J.
Haines
and
M. V.
de Hoop
, “
An invariant imbedding analysis of general wave scattering problems
,”
J. Math. Phys.
37
,
3854
3881
(
1996
).
77.
L.
Fishman
,
M. V.
de Hoop
, and
M. J. N.
van Stralen
, “
Exact constructions of square-root Helmholtz operator symbols: The focusing quadratic profile
,”
J. Math. Phys.
41
,
4881
4938
(
2000
).
78.
E.
Slob
,
K.
Wapenaar
,
F.
Broggini
, and
R.
Snieder
, “
Seismic reflector imaging using internal multiples with Marchenko-type equations
,”
Geophysics
79
,
S63
S76
(
2014
).
79.
K.
Wapenaar
,
J.
Fokkema
,
M.
Dillen
, and
P.
Scherpenhuijsen
, “
One-way acoustic reciprocity and its applications in multiple elimination and time-lapse seismics
,” in
SEG, Expanded Abstracts
(
2000
), pp.
2377
2380
.
80.
L.
Amundsen
, “
Elimination of free-surface related multiples without need of the source wavelet
,”
Geophysics
66
,
327
341
(
2001
).
81.
E.
Holvik
and
L.
Amundsen
, “
Elimination of the overburden response from multicomponent source and receiver seismic data, with source designature and decomposition into PP-, PS-, SP-, and SS-wave responses
,”
Geophysics
70
,
S43
S59
(
2005
).
82.
K.
Wapenaar
and
J.
van der Neut
, “
A representation for Green's function retrieval by multidimensional deconvolution
,”
J. Acoust. Soc. Am.
128
,
EL366
EL371
(
2010
).
83.
J.
van der Neut
,
J.
Thorbecke
,
K.
Mehta
,
E.
Slob
, and
K.
Wapenaar
, “
Controlled-source interferometric redatuming by crosscorrelation and multidimensional deconvolution in elastic media
,”
Geophysics
76
,
SA63
SA76
(
2011
).
84.
M.
Ravasi
,
G.
Meles
,
A.
Curtis
,
Z.
Rawlinson
, and
L.
Yikuo
, “
Seismic interferometry by multidimensional deconvolution without wavefield separation
,”
Geophys. J. Int.
202
,
1
16
(
2015
).
85.
B. L. N.
Kennett
and
N. J.
Kerry
, “
Seismic waves in a stratified half-space
,”
Geophys. J. R. Astron. Soc.
57
,
557
584
(
1979
).
86.
R. M.
Kiehn
,
G. P.
Kiehn
, and
J. B.
Roberds
, “
Parity and time-reversal symmetry breaking, singular solutions, and Fresnel surfaces
,”
Phys. Rev. A
43
,
5665
5671
(
1991
).
87.
E.
Slob
and
K.
Wapenaar
, “
Green's function extraction for interfaces with impedance boundary conditions
,”
IEEE Trans. Ant. Prop.
60
,
351
359
(
2012
).
88.
B. D. H.
Tellegen
, “
The gyrator, a new electric network element
,”
Philips Res. Rep.
3
,
81
101
(
1948
), available at http://web.archive.org/web/20140423045739/http://techpreservation.dyndns.org/beitman/abpr/newfiles/The%20Gyrator.pdf.
You do not currently have access to this content.