This work presents a mechanism by which non-reciprocal wave transmission is achieved in a class of gyric metamaterial lattices with embedded rotating elements. A modulation of the device's angular momentum is obtained via prescribed rotations of a set of locally housed spinning motors and is then used to induce space-periodic, time-periodic, as well as space-time-periodic variations, which influence wave propagation in distinct ways. Owing to their dependence on gyroscopic effects, such systems are able to break reciprocal wave symmetry without stiffness perturbations rendering them consistently stable as well as energy self-reliant. Dispersion patterns, band gap emergence, as well as non-reciprocal wave transmission in the space-time-periodic gyric metamaterials are predicted both analytically from the gyroscopic system dynamics as well as numerically via time-dependent full wave simulations. In addition to breaking reciprocity, the authors show that the energy content of a frictionless gyric metamaterial is conserved over one temporal modulation cycle enabling it to exhibit a stable response irrespective of the pumping frequency.

1.
L.
Brillouin
,
Wave Propagation in Periodic Structures: Electric Filters and Crystal Lattices
(
Dover Publications Inc
,
Mineola, NY
,
2003
).
2.
D.
Mead
, “
Wave propagation in continuous periodic structures: Research contributions from Southampton, 1964 − 1995
,”
J. Sound Vib.
190
,
495
524
(
1996
).
3.
P. A.
Deymier
,
Acoustic Metamaterials and Phononic Crystals
(
Springer-Verlag
,
Berlin, Heidelberg
,
2013
), Vol.
173
.
4.
M. I.
Hussein
,
M. J.
Leamy
, and
M.
Ruzzene
, “
Dynamics of phononic materials and structures: Historical origins, recent progress, and future outlook
,”
Appl. Mech. Rev.
66
,
040802
(
2014
).
5.
H. H.
Huang
,
C. T.
Sun
, and
G. L.
Huang
, “
On the negative effective mass density in acoustic metamaterials
,”
Int. J. Eng. Sci.
47
,
610
617
(
2009
).
6.
M.
Nouh
,
O.
Aldraihem
, and
A.
Baz
, “
Wave propagation in metamaterial plates with periodic local resonances
,”
J. Sound Vib.
341
,
53
73
(
2015
).
7.
H.
Al Ba'ba'a
and
M.
Nouh
, “
An investigation of vibrational power flow in one-dimensional dissipative phononic structures
,”
J. Vib. Acoust.
139
,
021003
021010
(
2017
).
8.
P. F.
Pai
, “
Metamaterial-based broadband elastic wave absorber
,”
J. Intell. Mater. Syst. Struct.
21
,
517
528
(
2010
).
9.
A.
Cullen
, “
A travelling-wave parametric amplifier
,”
Nature
181
,
332
(
1958
).
10.
G.
Trainiti
and
M.
Ruzzene
, “
Non-reciprocal elastic wave propagation in spatiotemporal periodic structures
,”
New J. Phys.
18
,
083047
(
2016
).
11.
A.
Seyranian
,
J.
Stoustrup
, and
W.
Kliem
, “
On gyroscopic stabilization
,”
Z. Angew. Math. Phys.
46
,
255
267
(
1995
).
12.
G. C.
Gaudin
, “
Gyro-controlled pitch stabilizing system
,”
U.S. patent 4 261, 278
(
1981
).
13.
L.
Barkwell
,
P.
Lancaster
, and
A.
Markus
, “
Gyroscopically stabilized systems: A class of quadratic eigenvalue problems with real spectrum
,”
Can. J. Math
44
,
42
53
(
1992
).
14.
M.
Brocato
and
G.
Capriz
, “
Control of beams and chains through distributed gyroscopes
,”
AIAA J.
47
,
294
302
(
2009
).
15.
Q.
Hu
,
Y.
Jia
, and
S.
Xu
, “
Recursive dynamics algorithm for multibody systems with variable-speed control moment gyroscopes
,”
J. Guid., Control, Dyn.
36
,
1388
1398
(
2013
).
16.
H.
Yoon
and
P.
Tsiotras
, “
Spacecraft adaptive attitude and power tracking with variable speed control moment gyroscopes
,”
J. Guid., Control, Dyn.
25
,
1081
1090
(
2002
).
17.
M.
Brun
,
I. S.
Jones
, and
A. B.
Movchan
, “
Vortex-type elastic structured media and dynamic shielding
,”
Proc. R. Soc. A
468
,
rspa20120165
(
2012
).
18.
L. M.
Nash
,
D.
Kleckner
,
A.
Read
,
V.
Vitelli
,
A. M.
Turner
, and
W. T.
Irvine
, “
Topological mechanics of gyroscopic metamaterials
,”
Proc. Natl. Acad. Sci.
112
,
14495
14500
(
2015
).
19.
P.
Wang
,
L.
Lu
, and
K.
Bertoldi
, “
Topological phononic crystals with one-way elastic edge waves
,”
Phys. Rev. Lett.
115
,
104302
(
2015
).
20.
G.
D'Eleuterio
and
P.
Hughes
, “
Dynamics of gyroelastic continua
,”
J. Appl. Mech.
51
,
415
422
(
1984
).
21.
Y.
Alsaffar
,
S.
Sassi
, and
A.
Baz
, “
Band gap characteristics of periodic gyroscopic systems
,”
J. Sound Vib.
435
,
301
322
(
2018
).
22.
J.
Achenbach
,
Wave Propagation in Elastic Solids
(
Elsevier
,
Amsterdam
,
2012
), Vol.
16
.
23.
M. B.
Zanjani
,
A. R.
Davoyan
,
A. M.
Mahmoud
,
N.
Engheta
, and
J. R.
Lukes
, “
One-way phonon isolation in acoustic waveguides
,”
Appl. Phys. Lett.
104
,
081905
(
2014
).
24.
N.
Swinteck
,
S.
Matsuo
,
K.
Runge
,
J.
Vasseur
,
P.
Lucas
, and
P.
Deymier
, “
Bulk elastic waves with unidirectional backscattering-immune topological states in a time-dependent superlattice
,”
J. Appl. Phys.
118
,
063103
(
2015
).
25.
R.
Fleury
,
D. L.
Sounas
,
C. F.
Sieck
,
M. R.
Haberman
, and
A.
Alù
, “
Sound isolation and giant linear nonreciprocity in a compact acoustic circulator
,”
Science
343
,
516
519
(
2014
).
26.
M.
Attarzadeh
and
M.
Nouh
, “
Elastic wave propagation in moving phononic crystals and correlations with stationary spatiotemporally modulated systems
,”
AIP Adv.
8
,
105302
(
2018
).
27.
D.
Beli
,
P. B.
Silva
, and
J. R. de
França Arruda
, “
Mechanical circulator for elastic waves by using the nonreciprocity of flexible rotating rings
,”
Mech. Syst. Signal Process.
98
,
1077
1096
(
2018
).
28.
H.
Nassar
,
X.
Xu
,
A.
Norris
, and
G.
Huang
, “
Modulated phononic crystals: Non-reciprocal wave propagation and willis materials
,”
J. Mech. Phys. Solids
101
,
10
29
(
2017
).
29.
M.
Attarzadeh
,
H.
Al Ba'ba'a
, and
M.
Nouh
, “
On the wave dispersion and non-reciprocal power flow in space-time traveling acoustic metamaterials
,”
Appl. Acoust.
133
,
210
214
(
2018
).
30.
M.
Attarzadeh
and
M.
Nouh
, “
Non-reciprocal elastic wave propagation in 2d phononic membranes with spatiotemporally varying material properties
,”
J. Sound Vib.
422
,
264
277
(
2018
).
31.
C.
Croënne
,
J.
Vasseur
,
O.
Bou Matar
,
M.-F.
Ponge
,
P.
Deymier
,
A.-C.
Hladky-Hennion
, and
B.
Dubus
, “
Brillouin scattering-like effect and non-reciprocal propagation of elastic waves due to spatio-temporal modulation of electrical boundary conditions in piezoelectric media
,”
Appl. Phys. Lett.
110
,
061901
(
2017
).
32.
M.
Ansari
,
M.
Attarzadeh
,
M.
Nouh
, and
M. A.
Karami
, “
Application of magnetoelastic materials in spatiotemporally modulated phononic crystals for nonreciprocal wave propagation
,”
Smart Mater. Struct.
27
,
015030
(
2017
).
33.
R.
Chaunsali
,
F.
Li
, and
J.
Yang
, “
Stress wave isolation by purely mechanical topological phononic crystals
,”
Sci. Rep.
6
,
30662
(
2016
).
34.
G.
Trainiti
,
Y.
Xia
,
J.
Marconi
,
A.
Erturk
,
G.
Cazzulani
, and
M.
Ruzzene
, “
Time-periodic stiffness modulation in elastic metamaterials for selective wave filtering: Theory and experiment
,” arXiv:1804.09209 (
2018
).
35.
E.
Cassedy
, “
Dispersion relations in time-space periodic media: Part II, unstable interactions
,”
Proc. IEEE
55
,
1154
1168
(
1967
).
36.
G. W.
Milton
and
J. R.
Willis
, “
On modifications of Newton's second law and linear continuum elastodynamics
,”
Proc. R. Soc. London, Ser. A.
463
,
855
880
(
2007
).
37.
G. L.
Huang
and
C. T.
Sun
, “
Band gaps in a multiresonator acoustic metamaterial
,”
J. Vib. Acoust.
132
,
031003
(
2010
).
38.
H.
Al Ba'ba'a
,
M.
Nouh
, and
T.
Singh
, “
Formation of local resonance band gaps in finite acoustic metamaterials: A closed-form transfer function model
,”
J. Sound Vib.
410
,
429
446
(
2017
).
39.
H.
Crabtree
,
An Elementary Treatment of the Theory of Spinning Tops and Gyroscopic Motion
(
Longmans, Green, and Co
.,
London
,
1914
).
40.
M.
Garau
,
G.
Carta
,
M.
Nieves
,
I.
Jones
,
N.
Movchan
, and
A.
Movchan
, “
Interfacial waveforms in chiral lattices with gyroscopic spinners
,”
Proc. R. Soc., Ser. A
474
,
1
20
(
2018
).
41.
P.
Tien
, “
Parametric amplification and frequency mixing in propagating circuits
,”
J. Appl. Phys.
29
,
1347
1357
(
1958
).
42.
N. M.
Wereley
, “Analysis and control of linear periodically time varying systems
,” Ph.D. thesis, Massachusetts
Institute of Technology
(
1990
).
43.
J. A.
Richards
,
Analysis of Periodically Time-Varying Systems
(
Springer Science & Business Media
,
New York
,
2012
).
44.
R. W.
Brockett
,
Finite Dimensional Linear Systems
(
SIAM
,
Philadelphia
,
2015
), Vol.
74
.
45.
W.-C.
Xie
,
Dynamic Stability of Structures
(
Cambridge University Press
,
London
,
2006
).
46.
E.
Cassedy
and
A.
Oliner
, “
Dispersion relations in time-space periodic media: Part I, stable interactions
,”
Proc. IEEE
51
,
1342
1359
(
1963
).
47.
E.
Cassedy
, “
Temporal instabilities in traveling-wave parametric amplifiers (correspondence)
,”
IRE Trans. Microwave Theory Tech.
10
,
86
87
(
1962
).
48.
J.
Vila
,
R. K.
Pal
,
M.
Ruzzene
, and
G.
Trainiti
, “
A bloch-based procedure for dispersion analysis of lattices with periodic time-varying properties
,”
J. Sound Vib.
406
,
363
377
(
2017
).
49.
See supplementary material at https://doi.org/10.1121/1.5114916 for dispersion band reduction method and relations for space-time-periodic gmm.
50.
H.
Nassar
,
H.
Chen
,
A.
Norris
, and
G.
Huang
, “
Quantization of band tilting in modulated phononic crystals
,”
Phys. Rev. B
97
,
014305
(
2018
).

Supplementary Material

You do not currently have access to this content.