Dirac cones of an acoustic system are the foundation of most topological phase transitions and topological states and have recently become a research hotspot. Although the Dirac cones, Dirac-like cones, double Dirac cones, and semi-Dirac points are all skillfully designed, it is still indispensable to realize a tunable Dirac cone in a novel acoustic structure. This paper proposes two-dimensional acoustic metamaterials with matryoshka structure to achieve tunable Dirac cones and topological spin states. Dirac points can be obtained on the dispersion curves owing to the high symmetry. The concentric circular scattering units of the matryoshka structure are arranged in honeycomb lattices. By a rotating-scatterer mechanism to break the symmetry, the Dirac cone at K (K') is split and the topological spin states appear at the band valley. The existence of a topological transition with opposite Chern numbers as the rotating angle varies is also verified, and helical edge states are obtained along the interfaces separating the topologically opposite spin states insulators. Moreover, the frequency of the Dirac cone is tuned by rotating the inner structure in a double-layer matryoshka structure.

1.
Banerjee
,
S.
,
Singh
,
R. R. P.
,
Pardo
,
V.
, and
Pickett
,
W. E.
(
2009
). “
Tight-binding modeling and low-energy behavior of the semi-Dirac point
,”
Phys. Rev. Lett.
103
(
1
),
016402
.
2.
Bernevig
,
B. A.
,
Hughes
,
T. L.
, and
Zhang
,
S. C.
(
2006
). “
Quantum spin hall effect and topological phase transition in HgTe quantum wells
,”
Science
314
,
1757
1761
.
3.
Chen
,
Z.-G.
,
Ni
,
X.
,
Wu
,
Y.
,
He
,
C.
,
Sun
,
X.-C.
,
Zheng
,
L.-Y.
,
Lu
,
M.-H.
, and
Chen
,
Y.-F.
(
2014
). “
Accidental degeneracy of double Dirac cones in a phononic crystal
,”
Sci. Rep.
4
(
1
),
4613
.
4.
Dai
,
H.
,
Xia
,
B.
, and
Yu
,
D.
(
2017
). “
Dirac cones in two-dimensional acoustic metamaterials
,”
J. Appl. Phys.
122
(
6
),
065103
.
5.
Elford
,
D. P.
,
Chalmers
,
L.
,
Kusmartsev
,
F. V.
, and
Swallowe
,
G. M.
(
2011
). “
Matryoshka locally resonant sonic crystal
,”
J. Acoust. Soc. Am.
130
(
5
),
2746
2755
.
6.
Fleury
,
R.
,
Khanikaev
,
A. B.
, and
Alù
,
A.
(
2016
). “
Floquet topological insulators for sound
,”
Nat. Commun.
7
,
11744
.
7.
Fleury
,
R.
,
Sounas
,
D. L.
,
Sieck
,
C. F.
,
Haberman
,
M. R.
, and
Alu
,
A.
(
2014
). “
Sound isolation and giant linear nonreciprocity in a compact acoustic circulator
,”
Science
343
(
6170
),
516
519
.
8.
Häusler
,
W.
, and
Egger
,
R.
(
2009
). “
Artificial atoms in interacting graphene quantum dots
,”
Phys. Rev. B
80
(
16
),
161402
.
9.
He
,
C.
,
Li
,
Z.
,
Ni
,
X.
,
Sun
,
X.-C.
,
Yu
,
S.-Y.
,
Lu
,
M.-H.
,
Liu
,
X.-P.
, and
Chen
,
Y.-F.
(
2016
). “
Topological phononic states of underwater sound based on coupled ring resonators
,”
Appl. Phys. Lett.
108
(
3
),
031904
.
10.
He
,
C.
,
Ni
,
X.
,
Ge
,
H.
,
Sun
,
X.-C.
,
Chen
,
Y.-B.
,
Lu
,
M.-H.
,
Liu
,
X.-P.
, and
Chen
,
Y.-F.
(
2016
). “
Acoustic topological insulator and robust one-way sound transport
,”
Nat. Phys.
12
(
12
),
1124
1129
.
11.
Herring
,
C.
(
1937
). “
Accidental degeneracy in the energy bands of crystals
,”
Phys. Rev.
52
(
4
),
365
373
.
12.
Khanikaev
,
A. B.
,
Fleury
,
R.
,
Mousavi
,
S. H.
, and
Alù
,
A.
(
2015
). “
Topologically robust sound propagation in an angular-momentum-biased graphene-like resonator lattice
,”
Nat. Commun.
6
(
1
),
8260
.
13.
Li
,
Y.
, and
Mei
,
J.
(
2015
). “
Double Dirac cones in two-dimensional dielectric photonic crystals
,”
Opt. Express
23
(
9
),
12089
.
14.
Li
,
Y.
,
Wu
,
Y.
, and
Mei
,
J.
(
2014
). “
Double Dirac cones in phononic crystals
,”
Appl. Phys. Lett.
105
(
1
),
014107
.
15.
Lu
,
J.
,
Qiu
,
C.
,
Xu
,
S.
,
Ye
,
Y.
,
Ke
,
M.
, and
Liu
,
Z.
(
2014
). “
Dirac cones in two-dimensional artificial crystals for classical waves
,”
Phys. Rev. B
89
(
13
),
134302
.
16.
Lu
,
J.
,
Qiu
,
C.
,
Ye
,
L.
,
Fan
,
X.
,
Ke
,
M.
,
Zhang
,
F.
, and
Liu
,
Z.
(
2016
). “
Observation of topological valley transport of sound in sonic crystals
,”
Nat. Phys.
13
(
4
),
369
374
.
17.
Ma
,
G.
, and
Sheng
,
P.
(
2016
). “
Acoustic metamaterials: From local resonances to broad horizons
,”
Sci. Adv.
2
(
2
),
e1501595
.
18.
Malko
,
D.
,
Neiss
,
C.
,
Viñes
,
F.
, and
Görling
,
A.
(
2012
). “
Competition for graphene: Graphynes with direction-dependent Dirac cones
,”
Phys. Rev. Lett.
108
(
8
),
086804
.
19.
Martin
,
I.
,
Blanter
,
Y. M.
, and
Morpurgo
,
A. F.
(
2008
). “
Topological confinement in bilayer graphene
,”
Phys. Rev. Lett.
100
(
3
),
036804
.
20.
Novoselov
,
K. S.
,
Geim
,
A. K.
,
Morozov
,
S. V.
,
Jiang
,
D.
,
Katsnelson
,
M. I.
,
Grigorieva
,
I. V.
,
Dubonos
,
S. V.
, and
Firsov
,
A. A.
(
2005
). “
Two-dimensional gas of massless Dirac fermions in graphene
,”
Nature
438
(
7065
),
197
200
.
21.
Peng
,
Y.-G.
,
Qin
,
C.-Z.
,
Zhao
,
D.-G.
,
Shen
,
Y.-X.
,
Xu
,
X.-Y.
,
Bao
,
M.
,
Jia
,
H.
, and
Zhu
,
X.-F.
(
2016
). “
Experimental demonstration of anomalous Floquet topological insulator for sound
,”
Nat. Commun.
7
,
13368
.
22.
Sakoda
,
K.
(
2012
). “
Double Dirac cones in triangular-lattice metamaterials
,”
Opt. Express
20
(
9
),
9925
.
23.
Semenoff
,
G. W.
,
Semenoff
,
V.
, and
Zhou
,
F.
(
2008
). “
Domain walls in gapped graphene
,”
Phys. Rev. Lett.
101
(
8
),
087204
.
24.
Torrent
,
D.
, and
Sánchez-Dehesa
,
J.
(
2012
). “
Acoustic analogue of graphene: Observation of Dirac cones in acoustic surface waves
,”
Phys. Rev. Lett.
108
(
17
),
174301
.
25.
Wang
,
P.
,
Casadei
,
F.
,
Shan
,
S.
,
Weaver
,
J. C.
, and
Bertoldi
,
K.
(
2014
). “
Harnessing buckling to design tunable locally resonant acoustic metamaterials
,”
Phys. Rev. Lett.
113
,
014301
.
26.
Wang
,
P.
,
Lu
,
L.
, and
Bertoldi
,
K.
(
2015
). “
Topological phononic crystals with one-way elastic edge waves
,”
Phys. Rev. Lett.
115
,
104302
.
27.
Wei
,
Q.
,
Tian
,
Y.
,
Zuo
,
S.-Y.
,
Cheng
,
Y.
, and
Liu
,
X.-J.
(
2017
). “
Experimental demonstration of topologically protected efficient sound propagation in an acoustic waveguide network
,”
Phys. Rev. B
95
(
9
),
094305
.
28.
Wen
,
X.
,
Qiu
,
C.
,
Lu
,
J.
,
He
,
H.
,
Ke
,
M.
, and
Liu
,
Z.
(
2018
). “
Acoustic Dirac degeneracy and topological phase transitions realized by rotating scatterers
,”
J. Appl. Phys.
123
(
9
),
091703
.
29.
Wu
,
Y.
,
Yang
,
M.
, and
Sheng
,
P.
(
2018
). “
Perspective: Acoustic metamaterials in transition
,”
J. Appl. Phys.
123
(
9
),
090901
.
30.
Xia
,
B.
,
Liu
,
T.
,
Huang
,
G.
,
Dai
,
H.
,
Jiao
,
J.
,
Zang
,
X.
,
Yu
,
D.
,
Zheng
,
S.
, and
Liu
,
J.
(
2017
). “
Topological phononic insulator with robust pseudospin-dependent transport
,”
Phys. Rev. B
96
,
094106
.
31.
Xia
,
B.
,
Wang
,
G.
, and
Zheng
,
S.
(
2019
). “
Robust edge states of planar phononic crystals beyond high-symmetry points of Brillouin zones
,”
J. Mech. Phys. Solids
124
,
471
.
32.
Xia
,
B.
,
Zheng
,
S.
,
Liu
,
T.
,
Jiao
,
J.
,
Chen
,
N.
,
Dai
,
H. Q.
, and
Liu
,
J.
(
2018
). “
Observation of valley-like edge states of sound at a momentum away from the high-symmetry points
,”
Phys. Rev. B
97
,
155124
.
33.
Yang
,
Z.
,
Gao
,
F.
,
Shi
,
X.
,
Lin
,
X.
,
Gao
,
Z.
,
Chong
,
Y.
, and
Zhang
,
B.
(
2015
). “
Topological acoustics
,”
Phys. Rev. Lett.
114
(
11
),
114301
.
34.
Yu
,
K.
,
Chen
,
T.
,
Wang
,
X.
, and
Zhou
,
A.
(
2013
). “
Large band gaps in phononic crystal slabs with rectangular cylinder inclusions parallel to the slab surfaces
,”
J. Phys. Chem. Solids
74
,
1146
.
35.
Yves
,
S.
,
Fleury
,
R.
,
Lemoult
,
F.
,
Fink
,
M.
, and
Lerosey
,
G.
(
2017
). “
Topological acoustic polaritons: Robust sound manipulation at the subwavelength scale
,”
New J. Phys.
19
(
7
),
075003
.
36.
Zhai
,
F.
,
Mu
,
P.
, and
Chang
,
K.
(
2011
). “
Energy spectrum of Dirac electrons on the surface of a topological insulator modulated by a spiral magnetization superlattice
,”
Phys. Rev. B
83
(
19
),
195402
.
37.
Zhang
,
F.
,
Jung
,
J.
,
Fiete
,
G. A.
,
Niu
,
Q.
, and
MacDonald
,
A. H.
(
2011
). “
Spontaneous quantum hall states in Chirally stacked few-layer graphene systems
,”
Phys. Rev. Lett.
106
(
15
),
156801
.
38.
Zhang
,
X.
, and
Liu
,
Z.
(
2008
). “
Extremal transmission and beating effect of acoustic waves in two-dimensional sonic crystals
,”
Phys. Rev. Lett.
101
(
26
),
264303
.
39.
Zhang
,
Y.
,
Tan
,
Y.-W.
,
Stormer
,
H. L.
, and
Kim
,
P.
(
2005
). “
Experimental observation of the quantum Hall effect and Berry's phase in graphene
,”
Nature
438
(
7065
),
201
204
.
40.
Zhang
,
Z.
,
Wei
,
Q.
,
Cheng
,
Y.
,
Zhang
,
T.
,
Wu
,
D.
, and
Liu
,
X.
(
2017
). “
Topological creation of acoustic pseudospin multipoles in a flow-free symmetry-broken metamaterial lattice
,”
Phys. Rev. Lett.
118
(
8
),
084303
.
You do not currently have access to this content.