Constructing the topological states can serve as a promising approach for robust acoustic wave transports and manipulations. Here, the authors develop a scheme to realize acoustic topological states and adiabatic Thouless pumping in acoustic Floquet resonator systems. The directional acoustic wave can be robustly manipulated and pumped adiabatically from one side to the opposite side due to the non-trivial topological nature. The physical mechanism behind these phenomena can be understood by effective one-dimensional Aubry−André−Harper Hamiltonian, with an additional synthetic dimension originating from Floquet spatially periodic modulation. This Aubry−André−Harper acoustic resonator system can be regarded as a projection from a two-dimensional topological Hofstadter model for the integer quantum Hall effect. The authors' scheme provides a promising method for synthesizing acoustic topological states for efficient acoustic wave manipulations. Introducing the topological mechanism to the control wave will become an alternative method besides the conventional effective acoustic parameter methods.

1.
Bansil
,
A.
,
Lin
,
H.
, and
Das
,
T.
(
2016
). “
Colloquium: Topological band theory
,”
Rev. Mod. Phys.
88
,
021004
.
2.
Blumenthal
,
M.
,
Kaestner
,
B.
,
Li
,
L.
,
Giblin
,
S.
,
Janssen
,
T.
,
Pepper
,
M.
,
Anderson
,
D.
,
Jones
,
G.
, and
Ritchie
,
D.
(
2007
). “
Gigahertz quantized charge pumping
,”
Nat. Phys.
3
(
5
),
343
.
3.
Chaunsali
,
R.
,
Li
,
F.
, and
Yang
,
J.
(
2016
). “
Stress wave isolation by purely mechanical topological phononic crystals
,”
Sci. Rep.
6
,
30662
.
4.
Connolly
,
M. R.
,
Chiu
,
K. L.
,
Giblin
,
S. P.
,
Kataoka
,
M.
,
Fletcher
,
J. D.
,
Chua
,
C.
,
Griffiths
,
J. P.
,
Jones
,
G. A. C.
,
Fal'ko
,
V. I.
,
Smith
,
C. G.
, and
Janssen
,
T. J. B. M.
(
2013
). “
Gigahertz quantized charge pumping in graphene quantum dots
,”
Nat. Nanotechnol.
8
(
6
),
417
420
.
5.
Ding
,
K.
,
Ma
,
G.
,
Xiao
,
M.
,
Zhang
,
Z. Q.
, and
Chan
,
C. T.
(
2016
). “
Emergence, coalescence, and topological properties of multiple exceptional points and their experimental realization
,”
Phys. Rev. X
6
,
021007
.
6.
Fleury
,
R.
,
Khanikaev
,
A. B.
, and
Alu
,
A.
(
2016
). “
Floquet topological insulators for sound
,”
Nat. Commun.
7
,
11744
.
7.
Ganeshan
,
S.
,
Sun
,
K.
, and
Das Sarma
,
S.
(
2013
). “
Topological zero-energy modes in gapless commensurate Aubry-André-Harper models
,”
Phys. Rev. Lett.
110
,
180403
.
8.
Goldman
,
N.
,
Budich
,
J.
, and
Zoller
,
P.
(
2016
). “
Topological quantum matter with ultracold gases in optical lattices
,”
Nat. Phys.
12
(
7
),
639
.
9.
Hasan
,
M. Z.
, and
Kane
,
C. L.
(
2010
). “
Colloquium: Topological insulators
,”
Rev. Mod. Phys.
82
,
3045
3067
.
10.
He
,
C.
,
Ni
,
X.
,
Ge
,
H.
,
Sun
,
X.-C.
,
Chen
,
Y.-B.
,
Lu
,
M.-H.
,
Liu
,
X.-P.
, and
Chen
,
Y.-F.
(
2016
). “
Acoustic topological insulator and robust one-way sound transport
,”
Nat. Phys.
12
(
12
),
1124
.
11.
He
,
H.
,
Qiu
,
C.
,
Ye
,
L.
,
Cai
,
X.
,
Fan
,
X.
,
Ke
,
M.
,
Zhang
,
F.
, and
Liu
,
Z.
(
2018
). “
Topological negative refraction of surface acoustic waves in a Weyl phononic crystal
,”
Nature
560
(
7716
),
61
.
12.
Hofstadter
,
D. R.
(
1976
). “
Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields
,”
Phys. Rev. B
14
,
2239
2249
.
13.
Khanikaev
,
A. B.
,
Mousavi
,
S. H.
,
Tse
,
W.-K.
,
Kargarian
,
M.
,
MacDonald
,
A. H.
, and
Shvets
,
G.
(
2013
). “
Photonic topological insulators
,”
Nat. Mater.
12
(
3
),
233
.
14.
Kraus
,
Y. E.
,
Lahini
,
Y.
,
Ringel
,
Z.
,
Verbin
,
M.
, and
Zilberberg
,
O.
(
2012
). “
Topological states and adiabatic pumping in quasicrystals
,”
Phys. Rev. Lett.
109
,
106402
.
15.
Lang
,
L.-J.
,
Cai
,
X.
, and
Chen
,
S.
(
2012
). “
Edge states and topological phases in one-dimensional optical superlattices
,”
Phys. Rev. Lett.
108
,
220401
.
16.
Li
,
F.
,
Huang
,
X.
,
Lu
,
J.
,
Ma
,
J.
, and
Liu
,
Z.
(
2018
). “
Weyl points and Fermi arcs in a chiral phononic crystal
,”
Nat. Phys.
14
(
1
),
30
.
17.
Lohse
,
M.
,
Schweizer
,
C.
,
Zilberberg
,
O.
,
Aidelsburger
,
M.
, and
Bloch
,
I.
(
2016
). “
A Thouless quantum pump with ultracold bosonic atoms in an optical superlattice
,”
Nat. Phys.
12
(
4
),
350
.
18.
Marra
,
P.
,
Citro
,
R.
, and
Ortix
,
C.
(
2015
). “
Fractional quantization of the topological charge pumping in a one-dimensional superlattice
,”
Phys. Rev. B
91
,
125411
.
19.
Nakajima
,
S.
,
Tomita
,
T.
,
Taie
,
S.
,
Ichinose
,
T.
,
Ozawa
,
H.
,
Wang
,
L.
,
Troyer
,
M.
, and
Takahashi
,
Y.
(
2016
). “
Topological Thouless pumping of ultracold fermions
,”
Nat. Phys.
12
(
4
),
296
.
20.
Nassar
,
H.
,
Chen
,
H.
,
Norris
,
A.
, and
Huang
,
G.
(
2018
). “
Quantization of band tilting in modulated phononic crystals
,”
Phys. Rev. B
97
(
1
),
014305
.
21.
Niu
,
Q.
(
1990
). “
Towards a quantum pump of electric charges
,”
Phys. Rev. Lett.
64
,
1812
1815
.
22.
Niu
,
Q.
,
Thouless
,
D. J.
, and
Wu
,
Y.-S.
(
1985
). “
Quantized hall conductance as a topological invariant
,”
Phys. Rev. B
31
(
6
),
3372
.
23.
Pekola
,
J. P.
,
Saira
,
O.-P.
,
Maisi
,
V. F.
,
Kemppinen
,
A.
,
Möttönen
,
M.
,
Pashkin
,
Y. A.
, and
Averin
,
D. V.
(
2013
). “
Single-electron current sources: Toward a refined definition of the ampere
,”
Rev. Mod. Phys.
85
,
1421
1472
.
24.
Peng
,
Y. G.
,
Geng
,
Z. G.
, and
Zhu
,
X. F.
(
2018
). “
Topologically protected bound states in one-dimensional Floquet acoustic waveguide systems
,”
J. Appl. Phys.
123
(
9
),
091716
.
25.
Peng
,
Y.-G.
,
Qin
,
C.-Z.
,
Zhao
,
D.-G.
,
Shen
,
Y.-X.
,
Xu
,
X.-Y.
,
Bao
,
M.
,
Jia
,
H.
, and
Zhu
,
X.-F.
(
2016
). “
Experimental demonstration of anomalous Floquet topological insulator for sound
,”
Nat. Commun.
7
,
13368
.
26.
Pesin
,
D.
, and
MacDonald
,
A. H.
(
2012
). “
Spintronics and pseudospintronics in graphene and topological insulators
,”
Nat. Mater.
11
(
5
),
409
.
27.
Pothier
,
H.
,
Lafarge
,
P.
,
Urbina
,
C.
,
Esteve
,
D.
, and
Devoret
,
M.
(
1992
). “
Single-electron pump based on charging effects
,”
EPL (Europhys. Lett.)
17
(
3
),
249
.
28.
Qi
,
X.-L.
, and
Zhang
,
S.-C.
(
2011
). “
Topological insulators and superconductors
,”
Rev. Mod. Phys.
83
,
1057
1110
.
29.
Rechtsman
,
M. C.
,
Zeuner
,
J. M.
,
Plotnik
,
Y.
,
Lumer
,
Y.
,
Podolsky
,
D.
,
Dreisow
,
F.
,
Nolte
,
S.
,
Segev
,
M.
, and
Szameit
,
A.
(
2013
). “
Photonic Floquet topological insulators
,”
Nature
496
(
7444
),
196
.
30.
Serra-Garcia
,
M.
,
Peri
,
V.
,
Süsstrunk
,
R.
,
Bilal
,
O. R.
,
Larsen
,
T.
,
Villanueva
,
L. G.
, and
Huber
,
S. D.
(
2018
). “
Observation of a phononic quadrupole topological insulator
,”
Nature
555
(
7696
),
342
.
31.
Splettstoesser
,
J.
,
Governale
,
M.
,
König
,
J.
, and
Fazio
,
R.
(
2005
). “
Adiabatic pumping through interacting quantum dots
,”
Phys. Rev. Lett.
95
,
246803
.
32.
Süsstrunk
,
R.
, and
Huber
,
S. D.
(
2015
). “
Observation of phononic helical edge states in a mechanical topological insulator
,”
Science
349
(
6243
),
47
50
.
33.
Thouless
,
D.
(
1983
). “
Quantization of particle transport
,”
Phys. Rev. B
27
(
10
),
6083
.
34.
Verbin
,
M.
,
Zilberberg
,
O.
,
Lahini
,
Y.
,
Kraus
,
Y. E.
, and
Silberberg
,
Y.
(
2015
). “
Topological pumping over a photonic fibonacci quasicrystal
,”
Phys. Rev. B
91
,
064201
.
35.
Wang
,
L.
,
Troyer
,
M.
, and
Dai
,
X.
(
2013
). “
Topological charge pumping in a one-dimensional optical lattice
,”
Phys. Rev. Lett.
111
(
2
),
026802
.
36.
Wang
,
P.
,
Lu
,
L.
, and
Bertoldi
,
K.
(
2015
). “
Topological phononic crystals with one-way elastic edge waves
,”
Phys. Rev. Lett.
115
(
10
),
104302
.
37.
Wen
,
X.-G.
(
2017
). “
Colloquium: Zoo of quantum-topological phases of matter
,”
Rev. Mod. Phys.
89
,
041004
.
38.
Xiao
,
D.
,
Chang
,
M.-C.
, and
Niu
,
Q.
(
2010
). “
Berry phase effects on electronic properties
,”
Rev. Mod. Phys.
82
(
3
),
1959
.
39.
Xiao
,
M.
,
Chen
,
W.-J.
,
He
,
W.-Y.
, and
Chan
,
C. T.
(
2015
). “
Synthetic gauge flux and Weyl points in acoustic systems
,”
Nat. Phys.
11
(
11
),
920
.
40.
Yang
,
Z.
,
Gao
,
F.
,
Shi
,
X.
,
Lin
,
X.
,
Gao
,
Z.
,
Chong
,
Y.
, and
Zhang
,
B.
(
2015
). “
Topological acoustics
,”
Phys. Rev. Lett.
114
(
11
),
114301
.
41.
Yang
,
Z.
, and
Zhang
,
B.
(
2016
). “
Acoustic type-ii Weyl nodes from stacking dimerized chains
,”
Phys. Rev. Lett.
117
,
224301
.
42.
Zhang
,
L.
,
Ren
,
J.
,
Wang
,
J.-S.
, and
Li
,
B.
(
2010
). “
Topological nature of the phonon hall effect
,”
Phys. Rev. Lett.
105
,
225901
.
You do not currently have access to this content.