Recently, the study of topological phase transitions and edge states for acoustic wave systems has become a research hotspot. However, most current studies on topological edge states are based on Bragg scattering, which is not practical to apply in situations involving low-frequency sound because of the large structural dimensions. Therefore, the authors construct, in this study, a graphene-like structure based on a sub-wavelength resonant unit Helmholtz resonator and adjust the acoustic capacitance diameter of adjacent units to change the local resonance frequency, and thereby impose the degeneracy of the Dirac cone and topological spin states, which is characterized by valley Chern numbers of opposite sign. The authors also check topological valley edge states at zigzag and armchair interfaces and find that gapless topological valley edge states only appear at zigzag interfaces, whereas armchair interfaces host gap edge states. Moreover, the results show that the transmission properties of edge states in a zigzag rectangular waveguide are immune to backscattering and defects.

1.
Bernevig
,
B. A.
,
Hughes
,
T. L.
, and
Zhang
,
S. C.
(
2006
). “
Quantum spin Hall effect and topological phase transition in HgTe quantum wells
,”
Science
314
,
1757
1761
.
2.
Fang
,
N.
,
Xi
,
D.
,
Xu
,
J.
,
Ambati
,
M.
,
Srituravanich
,
W.
,
Sun
,
C.
, and
Zhang
,
X.
(
2006
). “
Ultrasonic metamaterials with negative modulus
,”
Nat. Mater.
5
,
452
456
.
3.
Fleury
,
R.
,
Khanikaev
,
A. B.
, and
Alù
,
A.
(
2016
). “
Floquet topological insulators for sound
,”
Nat. Commun.
7
,
11744
.
4.
Fleury
,
R.
,
Sounas
,
D.
, and
Alu
,
A.
(
2014
). “
Non-reciprocal acoustic devices based on spatio-temporal angular-momentum modulation
,”
J. Acoust. Soc. Am.
136
,
2281
.
5.
Hafezi
,
M.
,
Mittal
,
S.
,
Fan
,
J.
,
Migdall
,
A.
, and
Taylor
,
J.
(
2013
). “
Imaging topological edge states in silicon photonics
,”
Nat. Photon.
7
,
1001
1005
.
6.
Hasan
,
M. Z.
, and
Kane
,
C. L.
(
2010
). “
Colloquium:
Topological insulators
,”
Rev. Mod. Phys.
82
,
3045
3067
.
7.
He
,
C.
,
Li
,
Z.
,
Ni
,
X.
,
Sun
,
X.-C.
,
Yu
,
S.-Y.
,
Lu
,
M.-H.
,
Liu
, X.-P.
, and
Chen
,
Y.-F.
(
2016
). “
Topological phononic states of underwater sound based on coupled ring resonators
,”
Appl. Phys. Lett.
108
,
031904
.
8.
He
,
C.
,
Ni
,
X.
,
Ge
,
H.
,
Sun
,
X. C.
,
Chen
,
Y. B.
,
Lu
,
M. H.
,
Liu
,
X.-P.
, and
Chen
,
Y.-F.
(
2015
). “
Acoustic topological insulator and robust one-way sound transport
,”
Nat. Phys.
12
,
1124
1129
.
9.
Huang
,
X.
,
Lai
,
Y.
,
Hang
,
Z. H.
,
Zheng
,
H.
, and
Chan
,
C. T.
(
2011
). “
Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials
,”
Nat. Mater.
10
,
582
586
.
10.
Kane
,
C. L.
, and
Mele
,
E. J.
(
2005
). “
Quantum spin Hall effect in graphene
,”
Phys. Rev. Lett.
95
,
226801
.
11.
Khanikaev
,
A. B.
,
Fleury
,
R.
,
Mousavi
,
S. H.
, and
Alù
,
A.
(
2015
). “
Topologically robust sound propagation in an angular-momentum-biased graphene-like resonator lattice
,”
Nat. Commun.
6
,
8260
.
12.
Khanikaev
,
A. B.
,
Hossein Mousavi
,
S.
,
Tse
,
W. K.
,
Kargarian
,
M.
,
Macdonald
,
A. H.
, and
Shvets
,
G.
(
2012
). “
Photonic topological insulators
,”
Nat. Mater.
12
,
233
239
.
13.
Klitzing
,
K. V.
(
1986
). “
The quantized Hall effect
,”
Rev. Mod. Phys.
58
,
519
531
.
14.
Laughlin
,
R. B.
(
1983
). “
Anomalous quantum Hall effect:
An incompressible quantum fluid with fractionally charged excitations
,”
Phys. Rev. Lett.
50
,
1395
1398
.
15.
Lu
,
J.
,
Qiu
,
C.
,
Ke
,
M.
, and
Liu
,
Z.
(
2016
). “
Valley vortex states in sonic crystals
,”
Phys. Rev. Lett.
116
,
093901
.
16.
Lu
,
J.
,
Qiu
,
C.
,
Ye
,
L.
,
Fan
,
X.
,
Ke
,
M.
,
Zhang
,
F.
, and
Liu
,
Z.
(
2017
). “
Observation of topological valley transport of sound in sonic crystals
,”
Nat. Phys.
13
,
369
374
.
17.
Martin
,
I.
,
Blanter
,
Y. M.
, and
Morpurgo
,
A. F.
(
2008
). “
Topological confinement in bilayer graphene
,”
Phys. Rev. Lett.
100
,
036804
.
18.
Miniaci
,
M.
,
Pal
,
R. K.
,
Morvan
,
B.
, and
Ruzzene
,
M.
(
2018
). “
Experimental observation of topologically protected helical edge modes in patterned elastic plates
,”
Phys. Rev. X
8
,
031074
.
19.
Mousavi
,
S. H.
,
Khanikaev
,
A. B.
, and
Wang
,
Z.
(
2015
). “
Topologically protected elastic waves in phononic metamaterials
,”
Nat. Commun.
6
,
8682
.
20.
Ni
,
X.
,
He
,
C.
,
Sun
,
X. C.
,
Lu
,
M. H.
, and
Chen
,
Y. F.
(
2016
). “
Topologically protected one-way edge mode in networks of acoustic resonators with circulating air flow
,”
New. J. Phys.
17
,
053016
.
21.
Peng
,
Y.-G.
,
Qin
,
C.-Z.
,
Zhao
,
D.-G.
,
Shen
,
Y.-X.
,
Xu
,
X.-Y.
,
Bao
,
M.
,
Jia
,
H.
, and
Zhu
,
X.-F.
(
2016
). “
Experimental demonstration of anomalous Floquet topological insulator for sound
,”
Nat. Commun.
7
,
13368
.
22.
Qi
,
X. L.
, and
Zhang
,
S. C.
(
2011
). “
Topological insulators and superconductors
,”
Rev. Mod. Phys.
83
,
1057
1110
.
23.
Qiao
,
Z.
,
Jung
,
J.
,
Niu
,
Q.
, and
Macdonald
,
A. H.
(
2011
). “
Electronic highways in bilayer graphene
,”
Nano Lett.
11
,
3453
3459
.
24.
Rechtsman
,
M. C.
,
Zeuner
,
J. M.
,
Plotnik
,
Y.
,
Lumer
,
Y.
,
Podolsky
,
D.
,
Dreisow
,
F.
,
Nolte
,
S.
,
Segev
,
M.
, and
Szameit
,
A.
(
2013
). “
Photonic Floquet topological insulators
,”
Nature
496
,
196
200
.
25.
Semenoff
,
G. W.
,
Semenoff
,
V.
, and
Zhou
,
F.
(
2008
). “
Domain walls in gapped graphene
,”
Phys. Rev. Lett.
101
,
087204
.
26.
Souslov
,
A.
,
van Zuiden
,
B. C.
,
Bartolo
,
D.
, and
Vitelli
,
V.
(
2017
). “
Topological sound in active-liquid metamaterials
,”
Nat. Phys.
13
(
11
),
1091
1094
.
27.
Wang
,
Z.
,
Chong
,
Y.
,
Joannopoulos
,
J. D.
, and
Marin
,
S.
(
2009
). “
Observation of unidirectional backscattering-immune topological electromagnetic states
,”
Nature
461
,
772
775
.
28.
Wei
,
Q.
,
Tian
,
Y.
,
Zuo
,
S. Y.
,
Cheng
,
Y.
, and
Liu
,
X. J.
(
2017
). “
Experimental demonstration of topologically protected efficient sound propagation in an acoustic waveguide network
,”
Phys. Rev. B
95
,
094305
.
29.
Yang
,
Z.
,
Gao
,
F.
,
Shi
,
X.
,
Lin
,
X.
,
Gao
,
Z.
,
Chong
,
Y.
, and
Zhang
,
B.
(
2015
). “
Topological acoustics
,”
Phys. Rev. Lett.
114
,
114301
.
30.
Yves
,
S.
,
Fleury
,
R.
,
Berthelot
,
T.
,
Fink
,
M.
,
Lemoult
,
F.
, and
Lerosey
,
G.
(
2017a
). “
Crystalline metamaterials for topological properties at subwavelength scales
,”
Nat. Commun.
8
,
16023
.
31.
Yves
,
S.
,
Fleury
,
R.
,
Lemoult
,
F.
,
Fink
,
M.
, and
Lerosey
,
G.
(
2017b
). “
Topological acoustic polaritons:
Robust sound manipulation at the subwavelength scale
,”
New J. Phys.
19
,
075003
.
32.
Zhang
,
Z.
,
Tian
,
Y.
,
Cheng
,
Y.
,
Liu
,
X.
, and
Christensen
,
J.
(
2017a
). “
Experimental verification of acoustic pseudospin multipoles in a symmetry-broken snowflakelike topological insulator
,”
Phys. Rev. B
96
,
241306
.
33.
Zhang
,
Z.
,
Wei
,
Q.
,
Cheng
,
Y.
,
Zhang
,
T.
,
Wu
,
D.
, and
Liu
,
X.
(
2017b
). “
Topological creation of acoustic pseudospin multipoles in a flow-free symmetry-broken metamaterial lattice
,”
Phys. Rev. Lett.
118
,
084303
.
You do not currently have access to this content.