The topological transport of Lamb wave in phononic crystal slabs provides a great potential in reinforcing nondestructive testing, high sensitivity sensing, and information processing. In this paper, the authors investigate the pseudospins edge states of fundamental antisymmetric Lamb waves in a snowflakelike phononic slab. Significantly, the fourfold Dirac degeneracy for antisymmetric Lamb mode is accidentally formed at the Γ point with the critical angle of the snowflakelike holes, which does not require the folding of the lattices. Meanwhile, based on the rotating-scatterer mechanism, the mirror symmetry is broken and the topological multipole phase transitions are well induced during the gradual change of the scattering strength among the scatterers with the rotation angle. The topologically protected edge states and its unidirectional robust propagation are further demonstrated. The proposed topological phononic slabs will be a more hopeful option to apply in engineering practices.

1.
C. L.
Kane
and
E. J.
Mele
, “
Quantum spin Hall effect in grapheme
,”
Phys. Rev. Lett.
95
,
226801
(
2005
).
2.
M. Z.
Hasan
and
C. L.
Kane
, “
Colloquium: Topological insulators
,”
Rev. Mod. Phys.
82
,
3045
3067
(
2010
).
3.
S.
Barik
,
H.
Miyake
,
W.
Degottardi
,
E.
Waks
, and
M.
Hafezi
, “
Two-dimensionally confined topological edge states in photonic crystals
,”
New. J. Phys.
18
,
113013
(
2016
).
4.
T.
Ma
and
G.
Shvets
, “
All-Si valley-Hall photonic topological insulator
,”
New J. Phys.
18
,
025012
(
2016
).
5.
T.
Ma
and
G.
Shvets
, “
Scattering-free edge states between heterogeneous photonic topological insulators
,”
Phys. Rev. B
95
,
165102
(
2017
).
6.
J. W.
Dong
,
X. D.
Chen
,
H.
Zhu
,
Y.
Wang
, and
X.
Zhang
, “
Valley photonic crystals for control, Valley photonic crystals for control of spin and topology
,”
Nat. Mat.
16
,
298
303
(
2017
).
7.
J. C.
Lu
,
X. D.
Chen
,
W. M.
Deng
,
M.
Chen
, and
J. W.
Dong
, “
One-way propagation of bulk states and robust edge states in photonic crystals with broken inversion and time-reversal symmetries
,”
J. Opt.
20
,
075103
(
2018
).
8.
J.
Mei
,
Z. G.
Chen
, and
Y.
Wu
, “
Pseudo-time-reversal symmetry and topological edge states in two-dimensional acoustic crystals
,”
Sci. Rep.
6
,
32752
(
2016
).
9.
C.
He
,
X.
Ni
,
H.
Ge
,
X. C.
Sun
,
Y. B.
Chen
,
M. H.
Lu
,
X. P.
Liu
, and
Y. F.
Chen
, “
Acoustic topological insulator and robust one-way sound transport
,”
Nat. Phys.
12
,
1124
1129
(
2016
).
10.
Z. W.
Zhang
,
Q.
Wei
,
Y.
Cheng
,
T.
Zhang
,
D. J.
Wu
, and
X. J.
Liu
, “
Topological creation of acoustic pseudospin multipoles in a flow-free symmetry-broken metamaterial lattice
,”
Phys. Rev. Lett.
118
,
084303
(
2017
).
11.
Z. W.
Zhang
,
Y.
Tian
,
Y.
Cheng
,
X. J.
Liu
, and
J.
Christensen
, “
Experimental verification of acoustic pseudospin multipoles in a symmetry-broken snowflakelike topological insulators
,”
Phys. Rev. B
96
,
241306
(
2017
).
12.
Z. W.
Zhang
,
Y.
Tian
,
Y.
Chen
,
W.
Qi
,
X. J.
Liu
, and
J.
Christensen
, “
Topological acoustic delay line
,”
Phys. Rev. Appl.
9
,
034032
(
2018
).
13.
Y. C.
Deng
,
H.
Ge
,
Y.
Tian
,
M. H.
Lu
, and
Y.
Jing
, “
Observation of zone folding induced acoustic topological insulators and the role of spin-mixing defects
,”
Phys. Rev. B
96
,
184305
(
2017
).
14.
Y. G.
Peng
,
C. Z.
Qin
,
D. G.
Zhao
,
Y. X.
Shen
,
X. Y.
Xu
,
M.
Bao
,
H.
Jia
, and
X. F.
Zhu
, “Experimental demonstration of anomalous Floquet topological insulator for sound
,”
Nat. Commun.
7
,
13368
(
2016
).
15.
Y. G.
Peng
,
Y. X.
Shen
,
D. G.
Zhao
, and
X. F.
Zhu
, “
Low-loss and broadband anomalous Floquet topological insulator for airborne sound
,”
Appl. Phys. Lett.
110
,
173505
(
2017
).
16.
Q.
Wei
,
Y.
Tian
,
S. Y.
Zuo
,
Y.
Chen
, and
X. J.
Liu
, “
Experimental demonstration of topologically proteched efficient sound propagation in an acoustic waveguide network
,”
Phys. Rev. B
95
,
094305
(
2017
).
17.
S.
Yves
,
R.
Fleury
,
F.
Lemoult
,
M.
Fink
, and
G.
Lerosey
, “
Topological acoustic polaritions: Robust sound manipulation at the subwavelength scale
,”
New J. Phys.
19
,
075003
(
2017
).
18.
X.
Ni
,
M. A.
Gorlach
,
A.
Alu
, and
A. B.
Khanikaev
, “
Topological edge states in acoustic Kagome lattices
,”
New J. Phys.
19
,
055002
(
2017
).
19.
B.
Bahari
,
A.
Ndao
,
F.
Vallini
,
A.
El Amili
,
Y.
Fainman
, and
B.
Kante
, “
Nonreciprocal lasing in topological cavities of arbitrary geometries
,”
Science
358
,
636
639
(
2017
).
20.
S.
Barik
,
A.
Karasahin
,
C.
Flower
,
T.
Cai
,
H.
Miyake
,
W.
DeGottardi
,
M.
Hafezi
, and
E.
Waks
, “
A topological quantum optics interface
,”
Science
359
,
666
668
(
2018
).
21.
R.
Susstrunk
and
S. D.
Huber
, “
Observation of phononic helical edge states in a mechanical topological insulator
,”
Science
349
,
47
50
(
2015
).
22.
S. D.
Huber
, “
Topological mechanics
,”
Nat. Phys.
12
,
621
623
(
2016
).
23.
R.
Susstrunk
and
S. D.
Huber
, “
Classification of topological phonons in linear mechanical metamaterials
,”
Proc. Natl. Acad. Sci. U.S.A.
113
,
E4767
E4775
(
2016
).
24.
Z. J.
Yang
,
F.
Gao
,
X. H.
Shi
,
X.
Lin
,
Z.
Gao
,
Y. D.
Chong
, and
B. L.
Zhang
, “
Topological acoustics
,”
Phys. Rev. Lett.
114
,
114301
(
2015
).
25.
X.
Ni
,
C.
He
,
X. C
Sun
,
X. P.
Liu
,
M. H.
Lu
,
L.
Feng
, and
Y. F.
Chen
, “
Topologically protected one-way edge mode in networks of acoustic resonators with circulating airflow
,”
New J. Phys.
17
,
053016
(
2015
).
26.
Z. G.
Chen
and
Y.
Wu
, “
Tunable topological phononic crystals
,”
Phys. Rev. Appl.
5
,
054021
(
2016
).
27.
A.
Souslov
,
B. C.
van Zuiden
,
D.
Bartolo
, and
V.
Vitelli
, “
Topological sound in active-liquid metamaterials
,”
Nat. Phys.
13
,
1091
1094
(
2017
).
28.
P.
Wang
,
L.
Lu
, and
K.
Bertoldi
, “
Topological phononic crystals with one-way elastic edge waves
,”
Phys. Rev. Lett.
115
,
104302
(
2015
).
29.
R.
Fleury
,
A. B.
Khanikaev
, and
A.
Alù
, “
Floquet topological insulators for sound
,”
Nat. Commun.
7
,
11744
(
2016
).
30.
A. B.
Khanikaev
,
R.
Fleury
,
S. H.
Mousavi
, and
A.
Alù
, “
Topologically robust sound propagation in an angular-momentum-biased grapheme-like resonator lattice
,”
Nat. Commun.
6
,
8260
(
2015
).
31.
J. Y.
Lu
,
C. Y.
Qiu
,
L. P.
Ye
,
X. Y.
Fan
,
M. Z.
Ke
,
F.
Zhang
, and
Z. Y.
Liu
, “
Observation of topological valley transport of sound in sonic crystals
,”
Nat. Phys.
13
,
369
374
(
2017
).
32.
J. Y.
Lu
,
C. Y.
Qiu
,
W. Y.
Deng
,
X. Q.
Huang
,
F.
Li
,
F.
Zhang
,
S. Q.
Chen
, and
Z. Y.
Liu
, “
Valley topological phases in bilayer sonic crystals
,”
Phys. Rev. Lett
120
,
116802
(
2018
).
33.
X. H.
Wen
,
C. Y.
Qiu
,
J. Y.
Lu
,
H. L.
He
,
M. Z.
Ke
, and
Z. Y.
Liu
, “
Acoustic Dirac degeneracy and topological phase transitions realized by rotating scatterers
,”
J. Appl. Phys.
123
,
091703
(
2018
).
34.
S. Y.
Huo
,
J. J.
Chen
, and
H. B.
Huang
, “
Topologically protected edge states for out of-plane and in-plane bulk elastic waves
,”
J. Phys.: Condens. Matter
30
,
145403
(
2018
).
35.
J.
Li
,
J.
Wang
,
S. Q.
Wu
, and
J.
Mei
, “
Pseudospins and topological edge states in elastic shear waves
,”
AIP Adv.
7
,
125030
(
2017
).
36.
S. Y.
Huo
,
J. J.
Chen
,
H. B.
Huang
, and
G. L.
Huang
, “
Simultaneous multi-band valley-protected topological edge states of shear vertical wave in two-dimensional phononic crystals with veins
,”
Sci. Rep.
7
,
10335
(
2017
).
37.
J. J.
Chen
,
H. B.
Huang
,
S. Y.
Huo
,
Z. H.
Tan
,
X. P.
Xie
,
J. C.
Cheng
, and
G. L.
Huang
, “
Self-ordering induces multiple topological transitions for in-plane bulk waves in solid phononic crystals
,”
Phys. Rev. B
98
,
014302
(
2018
).
38.
J. F.
Zhao
,
B.
Bonello
, and
O.
Boyko
, “
Focusing of the lowest-order antisymmetric Lamb mode behind a gradient-index acoustic metalens with local resonators
,”
Phys. Rev. B
93
,
174306
(
2016
).
39.
T.
Brunet
,
J.
Vasseur
,
B.
Bonello
,
B.
Djfari-Rouhani
, and
A. C.
Hladky-Hennion
, “
Lamb waves in phononic crystal slabs with square or rectangular symmetries
,”
J. Appl. Phys.
104
,
043506
(
2008
).
40.
M.
Yan
,
J. Y.
Lu
,
F.
Li
,
W. Y.
Deng
,
X. Q.
Huang
,
J. H.
Ma
, and
Z. Y.
Liu
, “
On-chip valley topological materials for elastic wave manipulation
,”
Nat. Mater.
17
,
993
998
(
2018
).
41.
M.
Miniaci
,
A. S.
Gliozzi
,
B.
Morvan
,
A.
Krushynska
,
F.
Bosia
,
M.
Scalerandi
, and
N. M.
Pugno
, “
Proof of concept for an ultrasensitive technique to detect and localize sources of elastic nonlinearity using phononic crystals
,”
Phys. Rev. Lett.
118
,
214301
(
2017
).
42.
A. S.
Gliozzi
,
M.
Miniaci
,
F.
Bosia
,
N. M.
Pugno
, and
M.
Scalerandi
, “
Metamaterials-based sensor to detect and locate nonlinear elastic sources
,”
Appl. Phys. Lett.
107
,
161902
(
2015
).
43.
P. K.
Pal
and
M.
Ruzzene
, “
Edge waves in plates with resonators: An elastic analogue of the quantum valley Hall effect
,”
New J. Phys.
19
,
025001
(
2017
).
44.
J.
Vila
,
P. K.
Pal
, and
M.
Ruzzene
, “
Observation of topological valley modes in an elastic hexagonal lattice
,”
Phys. Rev. B
13
,
134307
(
2017
).
45.
T. W.
Liu
and
F.
Semperlotti
, “
Tunable acoustic valley-Hall edge states in reconfigurable phononic elastic waveguides
,”
Phys. Rev. Appl.
9
,
014001
(
2018
).
46.
H. F.
Zhu
,
T. W.
Liu
, and
F.
Semperlotti
, “
Design and experimental observation of valley-Hall edge states in diatomic-graphene-like elastic waveguides
,”
Phys. Rev. B
97
,
174301
(
2018
).
47.
R.
Chaunsali
,
C. W.
Chen
, and
J. Y.
Yang
, “
Subwavelength and directional control of flexural waves in zone-folding induced topological plates
,”
Phys. Rev. B
97
,
054307
(
2018
).
48.
R.
Chaunsali
,
C. W.
Chen
, and
J. Y.
Yang
, “
Experimental demonstration of topological waveguiding in elastic plates with local resonators
,”
New J. Phys.
20
,
113036
(
2018
).
49.
C.
Brendel
,
V.
Peano
,
O.
Painter
, and
F.
Marquardt
, “
Snowflake phononic topological insulator at the nanoscale
,”
Phys. Rev. B
2
,
020102
(
2018
).
50.
L. Y.
Yang
,
K. P.
Yu
,
Y.
Wu
,
R.
Zhao
, and
S. S.
Liu
,
Topological edge states for flexural waves in perforated phononic plates
,”
J. Phys. D: Appl. Phys.
51
,
325302
(
2018
).
51.
S. H.
Mousavi
,
A. B.
Khanikaev
, and
Z.
Wang
, “
Topologically protected elastic waves in phononic metamaterials
,”
Nat. Commun.
6
,
8286
(
2015
).
52.
M.
Miniaci
,
R. K.
Pal
,
B.
Morvan
, and
M.
Ruzzene
, “
Experimental observation of topologically protected helical edge modes in patterned elastic plates
,”
Phys. Rev. X
8
,
031074
(
2018
).
53.
S. Y.
Yu
,
C.
He
,
Z.
Wang
,
F. K.
Liu
,
X. C.
Sun
,
Z.
Li
,
M. H.
Lu
,
X. P.
Liu
, and
Y. F.
Chen
, “
Elastic pseudospin transport for integratable topological phononic circuits
,”
Nat. Commun.
9
,
3072
(
2018
).
54.
J.
Wang
and
J.
Mei
, “
Topological valley-chiral edge states of Lamb waves in elastic thin plates
,”
Appl. Phys. Express
11
,
057302
(
2018
).
55.
J. J.
Chen
,
S. Y.
Huo
,
Z. G.
Geng
,
H. B.
Huang
, and
X. F.
Zhu
, “
Topological valley transport of plate-mode waves in a homogenous thin plate with periodic stubbed surface
,”
AIP Adv.
7
,
115215
(
2017
).
56.
L. Y.
Feng
,
H. B.
Huang
,
J. C.
Zhang
,
X. P.
Xie
, and
J. J.
Chen
, “
Reconfigurable topological phononic crystal slabs
,”
Phys. Lett. A
382
,
2880
2885
(
2018
).
57.
J. J.
Chen
,
K. W.
Zhang
,
J.
Gao
, and
J. C.
Chen
, “
Stopbands for lower-order Lamb waves in one-dimensional composite thin plates
,”
Phys. Rev. B
73
,
094307
(
2006
).
58.
M. P.
Makwana
and
R. V.
Craster
, “
Geometrically navigating topological plate modes around gentle and sharp bends
,”
Phys. Rev. B
98
,
184105
(
2018
).
59.
J. Y.
Lu
,
C. Y.
Qiu
,
S. J.
Xu
,
Y. T.
Ye
,
M. Z.
Ke
, and
Z. Y.
Liu
, “
Dirac cones in two-dimensional artificial crystals for classical waves
,”
Phys. Rev. B
89
,
134302
(
2014
).
60.
B. A.
Bernevig
,
T. L.
Hughes
, and
S. C.
Zhang
, “
Quantum spin Hall effect and topological phase transition in HgTe quantum wells
,”
Science
314
,
1757
1761
(
2006
).
You do not currently have access to this content.