The goal of the study is to quantify the salient vocal tract acoustic, subglottal acoustic, and vocal tract physiological characteristics during phonation into a narrow flow-resistant tube with 2.53 mm inner diameter and 124 mm length in typically developing vocally healthy children using simultaneous microphone, accelerometer, and 3D/4D ultrasound recordings. Acoustic measurements included fundamental frequency (fo), first formant frequency (F1), second formant frequency (F2), first subglottal resonance (FSg1), and peak-to-peak amplitude ratio (Pvt:Psg). Physiological measurements included posterior tongue height (D1), tongue dorsum height (D2), tongue tip height (D3), tongue length (D4), oral cavity width (D5), hyoid elevation (D6), pharynx width (D7). All measurements were made on eight boys and ten girls (6–9 years) during sustained /o:/ production at typical pitch and loudness, with and without flow-resistant tube. Phonation with the flow-resistant tube resulted in a significant decrease in F1, F2, and Pvt:Psg and a significant increase in D2, D3, and FSg1. A statistically significant gender effect was observed for D1, with D1 higher in boys. These findings agree well with reported findings from adults, suggesting common acoustic and articulatory mechanisms for narrow flow-resistant tube phonation. Theoretical implications of the findings are discussed.

1.
Andrade
,
A. P.
,
Wistbacka
,
G.
,
Larsson
,
H.
,
Sodersten
,
M.
,
Hammarberg
,
B.
,
Simberg
,
S.
,
Svec
,
J. G.
, and
Granqvist
,
S.
(
2016
). “
The flow and pressure relationships in different tubes commonly used for semi-occluded vocal tract exercises
,”
J. Voice
30
(
1
),
36
41
.
2.
Andrade
,
A. P.
,
Wood
,
G.
,
Ratcliffe
,
P.
,
Epstein
,
R.
,
Pijper
,
A.
, and
Svec
,
J. G.
(
2014
). “
Electroglottographic study of seven semi-occluded exercises: LaxVox, straw, lip-trill, tongue-trill, humming, hand-over-mouth, and tongue-trill combined with hand-over-mouth
,”
J. Voice
28
(
5
),
589
595
.
3.
Atal
,
B. S.
, and
Hanaver
,
S. L.
(
1971
). “
Speech analysis and synthesis by linear prediction of the speech wave
,”
J. Acoust. Soc. Am.
50
(
2
),
637
655
.
4.
Badin
,
P.
, and
Fant
,
G.
(
1984
). “
Notes on vocal tract computation
,”
STL QPSR
25
(
2–3
),
53
108
.
5.
Baken
,
R. J.
, and
Orlikoff
,
R. F.
(
2007
).
Clinical Measurement of Speech and Voice
, 2nd ed. (
Delmar Cenage Learning
,
Clifton Park, NY
).
6.
Bhattacharyya
,
N.
(
2015
). “
The prevalence of pediatric voice and swallowing problems in the United States
,”
Laryngoscope
125
(
3
),
746
750
.
7.
Boseley
,
M. E.
, and
Hartnick
,
C. J.
(
2006
). “
Development of the human true vocal fold: Depth of cell layers and quantifying cell types within the lamina propria
,”
Ann. Otol. Rhinol. Laryngol.
115
(
10
),
784
788
.
8.
Buder
,
E. H.
(
1996
). “
Experimental phonology with acoustic phonetic models: Formant measures from child speech
,” in
Proceedings of the UBC International Conference on Phonological Acquisition
, pp.
254
265
.
9.
Bunton
,
K.
,
Story
,
B.
, and
Titze
,
I.
(
2013
). “
Estimation of vocal tract area functions in children based on measurement of lip termination area and inverse acoustic mapping
,”
Proc. Mtgs. Acoust.
19
,
060054
.
10.
Charles
,
S.
, and
Lulich
,
S. M.
(
2018
). “
Case study of Brazilian Portuguese laterals using a novel articulatory-acoustic methodology with 3D/4D ultrasound
,”
Speech Commun.
103
,
37
48
.
11.
Chen
,
J. M.
,
Smith
,
J.
, and
Wolfe
,
J.
(
2009
). “
Pitch bending and glissandi on the clarinet: Roles of the vocal tract and partial tone hole closure
,”
J. Acoust. Soc. Am.
126
(
3
),
1511
1520
.
12.
Chi
,
X.
, and
Sonderegger
,
M.
(
2007
). “
Subglottal coupling and its influence on vowel formants
,”
J. Acoust. Soc. Am.
122
(
3
),
1735
1745
.
13.
Chiba
,
T.
, and
Kajiyama
,
M.
(
1941
).
The Vowel: Its Nature and Structure
(
Kaiseikan
,
Tokyo
).
14.
Chi-Fishman
,
G.
, and
Stone
,
M.
(
1996
). “
A new application for electropalatography: Swallowing
,”
Dysphagia
11
(
4
),
239
247
.
15.
Cranen
,
B.
, and
Boves
,
L.
(
1987
). “
On subglottal formant analysis
,”
J. Acoust. Soc. Am.
81
(
3
),
734
746
.
16.
Csapo
,
T. G.
,
Barkanyi
,
Z.
,
Graczi
,
T. E.
,
Bohm
,
T.
, and
Lulich
,
S. M.
(
2009
). “
Relation of formants and subglottal resonances in Hungarian vowels
,” in
Proceedings of Interspeech
, pp.
484
487
.
17.
da Silva
,
A. R.
,
Ghirardi
,
A. C.
,
Reiser
,
M. R.
, and
Paul
,
S.
(
2018
). “
An exact analytical model for the relationship between flow resistance and geometric properties of tubes used in semi-occluded vocal tract exercises
,”
J. Voice
(published online).
18.
Dogil
,
G.
,
Lulich
,
S. M.
,
Madsack
,
A.
, and
Wokurek
,
W.
(
2010
). “
Crossing the quantal boundaries of features: Subglottal resonances and Swabian diphthongs
,” in
Tones and Features: Phonetic and Phonological Perspectives
, edited by
J. A.
Goldsmith
,
E.
Hume
, and
W.
Wetzels
(
Walter de Gruyter
,
Berlin
), pp.
137
148
.
19.
Fant
,
G.
(
1960
).
Acoustic Theory of Speech Production
(
Mouton
,
the Hague, the Netherlands
).
20.
Fant
,
G.
(
1972
). “
Vocal tract wall effects, losses, and resonance bandwidths
,”
Speech Trans. Lab. Quart. Prog. Stat. Rep.
13
(
2–3
),
28
52
.
21.
Fant
,
G.
, and
Lindquist
,
J.
(
1968
). “
Pressure and gas mixture effects on diver's speech
,” in
Quarterly Progress and Status Report STL-QPSR
,
Speech Transmission Laboratory, Royal Institute of Technology
,
Stockholm, Sweden
, Vol. 9(1),
7
17
.
22.
Fant
,
G.
,
Nord
,
L.
, and
Branderud
,
P.
(
1976
). “
A note on the vocal tract wall impedance
,”
KTH Quart. Prog. Stat. Rep.
17
(
4
),
13
20
.
23.
Fant
,
G.
, and
Sonesson
,
B.
(
1964
). “
Speech at high ambient air-pressure
,” in
Quarterly Progress and Status Report, Speech Transmission Laboratory
,
Royal Institute of Technology (KTH)
,
Stockholm, Sweden
, Vol. 5(2), 9–21.
24.
Fric
,
M.
, and
Hruska
,
V.
(
2017
). “
The effect of resonance tubes on facial and laryngeal vibration—A case study
,”
Biomed. Sign. Process. Control
37
,
50
60
.
25.
Fritz
,
C.
, and
Wolfe
,
J.
(
2005
). “
How do clarinet players adjust the resonances of their vocal tracts for different playing effects?
,”
J. Acoust. Soc. Am.
118
(
5
),
3306
3315
.
26.
Fujimura
,
O.
, and
Lindqvist
,
J.
(
1971
). “
Sweep-tone measurements of vocal-tract characteristics
,”
J. Acoust. Soc. Am.
49
(
2
),
541
558
.
27.
Gaskill
,
C. S.
, and
Erickson
,
M. L.
(
2010
). “
The effect of an artificially lengthened vocal tract on estimated glottal contact quotient in untrained male voices
,”
J. Voice
24
(
1
),
57
71
.
28.
Gaskill
,
C. S.
, and
Quinney
,
D. M.
(
2012
). “
The effect of resonance tubes on glottal contact quotient with and without task instruction: A comparison of trained and untrained voices
,”
J. Voice
26
(
3
),
e79
e93
.
29.
Granqvist
,
S.
,
Simberg
,
S.
,
Hertegard
,
S.
,
Holmqvist
,
S.
,
Larsson
,
H.
,
Lindestad
,
P. A.
,
Sodersten
,
M.
, and
Hammarberg
,
B.
(
2014
). “
Resonance tube phonation in water: High-speed imaging, electroglottographic and oral pressure observations of vocal fold vibrations—A pilot study
,”
Logoped Phoniatr. Vocol.
40
,
113
121
.
30.
Gunst
,
S. J.
, and
Stropp
,
J. Q.
(
1988
). “
Pressure-volume and length-stress relationships in canine bronchi in vitro
,”
J. Appl. Physiol.
64
(
6
),
2522
2531
.
31.
Guzman
,
M.
,
Castro
,
C.
,
Testart
,
A.
,
Munoz
,
D.
, and
Gerhard
,
J.
(
2013a
). “
Laryngeal and pharyngeal activity during semioccluded vocal tract postures in subjects diagnosed with hyperfunctional dysphonia
,”
J. Voice
27
(
6
),
709
716
.
32.
Guzman
,
M.
,
Higueras
,
D.
,
Fincheira
,
C.
,
Munoz
,
D.
,
Guajardo
,
C.
, and
Dowdall
,
J.
(
2013b
). “
Immediate acoustic effects of straw phonation exercises in subjects with dysphonic voices
,”
Logoped Phoniatr. Vocol.
38
(
1
),
35
45
.
33.
Guzman
,
M.
,
Jara
,
R.
,
Olavarria
,
C.
,
Caceres
,
P.
,
Escuti
,
G.
,
Medina
,
F.
,
Medina
,
L.
,
Madrid
,
S.
,
Munoz
,
D.
, and
Laukkanen
,
A. M.
(
2017a
). “
Efficacy of water resistance therapy in subjects diagnosed with behavioral dysphonia: A randomized controlled trial
,”
J. Voice
31
(
3
),
e381
e385
.
34.
Guzman
,
M.
,
Laukkanen
,
A. M.
,
Krupa
,
P.
,
Horacek
,
J.
,
Svec
,
J. G.
, and
Geneid
,
A.
(
2013c
). “
Vocal tract and glottal function during and after vocal exercising with resonance tube and straw
,”
J. Voice
27
(
4
),
e519
e534
.
35.
Guzman
,
M.
,
Miranda
,
G.
,
Olavarria
,
C.
,
Madrid
,
S.
,
Munoz
,
D.
,
Leiva
,
M.
,
Lopex
,
L.
, and
Bortnem
,
C.
(
2017b
). “
Computerized tomography measures during and after artificial lengthening of the vocal tract in subjects with voice disorders
,”
J. Voice
31
(
1
),
e121
e124
.
36.
Hanna
,
N.
,
Smith
,
J.
, and
Wolfe
,
J.
(
2018
). “
How the acoustic resonances of the subglottal tract affect the impedance spectrum measured through the lips
,”
J. Acoust. Soc. Am.
143
(
5
),
2639
2650
.
37.
Hanson
,
D. G.
,
Gerratt
,
B. R.
, and
Berke
,
G. S.
(
1990
). “
Frequency, intensity, and target matching effects on photoglottographic measures of open quotient and speed quotient
,”
J. Speech Hear. Res.
33
(
1
),
45
50
.
38.
Hillenbrand
,
J.
,
Getty
,
L. A.
,
Clark
,
M. J.
, and
Wheeler
,
K.
(
1995
). “
Acoustic characteristics of American English vowels
,”
J. Acoust. Soc. Am.
97
(5
),
3099
3111
.
39.
Horacek
,
J.
,
Radolf
,
V.
,
Bula
,
V.
, and
Laukkanen
,
A. M.
(
2014
). “
Air-pressure, vocal folds vibration and acoustic characteristics of phonation during vocal exercising. Part 2. Measurement on a physical model
,”
Eng. Mech.
21
(
3
),
193
200
.
40.
Horacek
,
J.
,
Radolf
,
V.
, and
Laukkanen
,
A. M.
(
2017
). “
Low frequency mechanical resonance of the vocal tract in vocal exercises that apply tubes
,”
Biomed. Sign. Process. Control
37
,
39
49
.
41.
Ishizaka
,
K.
,
French
,
J.
, and
Flanagan
,
J.
(
1975
). “
Direct determination of vocal tract wall impedance
,”
IEEE Trans. Acoust. Speech Sign. Process.
23
(
4
),
370
373
.
42.
Ishizaka
,
K.
,
Matsudaira
,
M.
, and
Kaneko
,
T.
(
1976
). “
Input acoustic-impedance measurement of the subglottal system
,”
J. Acoust. Soc. Am.
60
(
1
),
190
197
.
43.
Kapsner-Smith
,
M. R.
,
Hunter
,
E. J.
,
Kirkham
,
K.
,
Cox
,
K.
, and
Titze
,
I. R.
(
2015
). “
A randomized controlled trial of two semi-occluded vocal tract voice therapy protocols
,”
J. Speech Lang. Hear. Res.
58
,
535
549
.
44.
Keilmann
,
A.
, and
Bader
,
C. A.
(
1995
). “
Development of aerodynamic aspects in children's voice
,”
Int. J. Pediatr. Otorhinolaryngol.
31
(
2-3
),
183
190
.
45.
Kier
,
W.
, and
Smith
,
K.
(
1985
). “
Tongues, tentacles and trunks: The biomechanics of movement in muscular-hydrostats
,”
Zoolog. J. Linnean Soc.
83
(
4
),
307
324
.
46.
Laukkanen
,
A. M.
(
1992
). “
Voiced bilabial fricative [β:] as a vocal exercise: An electroglottographic and acoustic investigation
,”
Scand. J. Logoped. Phoniatr.
17
(
3-4
),
181
189
.
47.
Laukkanen
,
A. M.
,
Horacek
,
J.
, and
Havlik
,
R.
(
2012a
). “
Case-study magnetic resonance imaging and acoustic investigation of the effects of vocal warm-up on two voice professionals
,”
Logoped Phoniatr. Vocol.
37
(
2
),
75
82
.
48.
Laukkanen
,
A. M.
,
Horáček
,
J.
,
Krupa
,
P.
, and
Švec
,
J.
(
2012b
). “
The effect of phonation into a straw on the vocal tract adjustments and formant frequencies. A preliminary MRI study on a single subject completed with acoustic results
,”
Biomed. Sign. Process. Control
7
,
50
57
.
49.
Laukkanen
,
A. M.
,
Lindholm
,
P.
, and
Vilkman
,
E.
(
1995
). “
On the effects of various vocal training methods on glottal resistance and efficiency: A preliminary report
,”
Folia Phoniatr.
47
,
324
330
.
50.
Laukkanen
,
A. M.
,
Lindholm
,
P.
,
Vilkman
,
E.
,
Haataja
,
K.
, and
Alku
,
P.
(
1996
). “
A physiological and acoustic study on voiced bilabial fricative /β:/ as a vocal exercise
,”
J. Voice
10
(
1
),
67
77
.
51.
Laukkanen
,
A. M.
,
Titze
,
I. R.
,
Hoffman
,
H.
, and
Finnegan
,
E.
(
2008
). “
Effects of a semioccluded vocal tract on laryngeal muscle activity and glottal adduction in a single female subject,” Folia Phoniatr
.
Logop.
60
(
6
),
298
311
.
52.
Lee
,
S.
,
Potamianos
,
A.
, and
Narayanan
,
S.
(
1999
). “
Acoustics of children's speech: Developmental changes of temporal and spectral parameters
,”
J. Acoust. Soc. Am.
105
(
3
),
1455
1468
.
53.
Lee
,
S. H.
,
Yu
,
J. F.
,
Hsieh
,
Y. H.
, and
Lee
,
G. S.
(
2015
). “
Relationships between formant frequencies of sustained vowels and tongue contours measured by ultrasonography
,”
Am. J. Speech-Lang. Pathol.
24
(
4
),
739
749
.
54.
Linklater
,
K.
(
1976
).
Freeing the Natural Voice
(
Drama Book
,
New York
).
55.
Lulich
,
S. M.
(
2010
). “
Subglottal resonances and distinctive features
,”
J. Phon.
38
(
1
),
20
32
.
56.
Lulich
,
S. M.
,
Alwan
,
A.
,
Arsikere
,
H.
,
Morton
,
J. R.
, and
Sommers
,
M. S.
(
2011a
). “
Resonances and wave propagation velocity in the subglottal airways
,”
J. Acoust. Soc. Am.
130
(
4
),
2108
2115
.
57.
Lulich
,
S. M.
, and
Arsikere
,
H.
(
2015
). “
Tracheo-bronchial soft tissue and cartilage resonances in the subglottal acoustic input impedance
,”
J. Acoust. Soc. Am.
137
(
6
),
3436
3446
.
58.
Lulich
,
S. M.
,
Arsikere
,
H.
,
Morton
,
J. R.
,
Leung
,
G. K. F.
,
Alwan
,
A.
, and
Sommers
,
M. S.
(
2011b
). “
Analysis and automatic estimation of children's subglottal resonances
,” in
12th Annual Conference of the International Speech Communication Association 2011 (Interspeech 2011)
, Vols. 1–5, pp.
2817
2820
.
59.
Lulich
,
S. M.
,
Berkson
,
K.
, and
de Jong
,
J. M.
(
2018
). “
Acquiring and visualization 3D/4D ultrasound recordings of tongue motion
,”
J. Phon.
71
,
410
424
.
60.
Lulich
,
S. M.
,
Charles
,
S.
, and
Lulich
,
B.
(
2017
). “
The relation between tongue shape and pitch in clarinet playing using ultrasound measurements
,”
J. Acoust. Soc. Am.
141
,
1759
1768
.
61.
Lulich
,
S. M.
,
Morton
,
J. R.
,
Arsikere
,
H.
,
Sommers
,
M. S.
,
Leung
,
G. K.
, and
Alwan
,
A.
(
2012
). “
Subglottal resonances of adult male and female native speakers of American English
,”
J. Acoust. Soc. Am.
132
(
4
),
2592
2602
.
62.
Lundberg
,
A. J.
, and
Stone
,
M.
(
1999
). “
Three-dimensional tongue surface reconstruction: Practical considerations for ultrasound data
,”
J. Acoust. Soc. Am.
106
(
5
),
2858
2867
.
63.
McKenna
,
V. S.
,
Llico
,
A. F.
,
Mehta
,
D. D.
,
Perkell
,
J. S.
, and
Stepp
,
C. E.
(
2017
). “
Magnitude of neck-surface vibration as an estimate of subglottal pressure during modulations of vocal effort and intensity in healthy speakers
,”
J. Speech Lang. Hear. Res.
60
(
12
),
3404
3416
.
64.
Meltzner
,
G. S.
,
Kobler
,
J. B.
, and
Hillman
,
R. E.
(
2003
). “
Measuring the neck frequency response function of laryngectomy patients: Implications for the design of electrolarynx devices
,”
J. Acoust. Soc. Am.
114
(
2
),
1035
1047
.
65.
Mik
,
L.
,
Krol
,
D.
,
Lorenc
,
A.
, and
Wielgat
,
R.
(
2018
). “
Fusing the electromagnetic articulograph, high-speed video cameras and a 16-channel microphone array for speech analysis
,”
Bull. Polish Acad. Sci.: Tech. Sci.
66
(
3
),
257
266
.
66.
Mills
,
R. D.
,
Rivedal
,
S.
,
DeMorett
,
C.
,
Maples
,
G.
, and
Jiang
,
J. J.
(
2017
). “
Effects of straw phonation through tubes of varied lengths on sustained vowels in normal-voiced participants
,”
J. Voice
32
,
e21
e29
.
67.
Munger
,
J. B.
, and
Thomson
,
S. L.
(
2008
). “
Frequecy response of the skin of the head and neck during production of selected speech sounds
,”
J. Acoust. Soc. Am.
124
(
6
),
4001
4012
.
68.
Nix
,
J.
(
1999
). “
Lip trills and raspberries: ‘High-spit factor’ alternatives to the nasal continuant consonants
,”
J. Sing.
55
,
15
19
.
69.
Patel
,
R.
,
Donohue
,
K. D.
,
Unnikrishnan
,
H.
, and
Kryscio
,
R. J.
(
2015
). “
Kinematic measurements of the vocal-fold displacement waveform in typical children and adult populations: Quantification of high-speed endoscopic videos
,”
J. Speech Lang. Hear. Res.
58
(
2
),
227
240
.
70.
Patel
,
R.
,
Dubrovskiy
,
D.
, and
Döllinger
,
M.
(
2014
). “
Measurement of glottal cycle characteristics between children and adults: Physiological variations
,”
J. Voice
28
(
4
),
476
486
.
71.
Powell
,
M.
,
Filter
,
M. D.
, and
Williams
,
B.
(
1989
). “
A longitudinal study of the prevalence of voice disorders in children from a rural school division
,”
J. Commun. Disord.
22
(
5
),
375
382
.
72.
Radolf
,
V.
,
Laukkanen
,
A. M.
,
Horaccek
,
J.
, and
Liu
,
D.
(
2014
). “
Air-pressure, vocal fold vibration and acoustic characteristics of phonation during vocal exercising. Part 1: Measurement in vivo
,”
Eng. Mech.
21
(
1
),
53
59
.
73.
Ramos
,
L. A.
, and
Gama
,
A. C. C.
(
2017
). “
Effect of performance time of the semi-occluded vocal tract exercises in dysphonic children
,”
J. Voice
31
(
3
),
329
335
.
74.
Sato
,
K.
,
Hirano
,
M.
, and
Nakashima
,
T.
(
2001
). “
Fine structure of the human newborn and infant vocal fold mucosae
,”
Ann. Otol. Rhinol. Laryngol.
110
(
5
),
417
424
.
75.
Scavone
,
G. P.
,
Lefebvre
,
A.
, and
da Silva
,
A. R.
(
2008
). “
Measurement of vocal-tract influence during saxophone performance
,”
J. Acoust. Soc. Am.
123
(
4
),
2391
2400
.
76.
Shawker
,
T. H.
,
Sonies
,
B. C.
, and
Stone
,
M.
(
1984
). “
Soft tissue anatomy of the tongue and floor of the mouth: An ultrasound demonstration
,”
Brain Lang.
21
(
2
),
335
350
.
77.
Sihvo
,
M.
, and
Dienizoglu
,
I.
(
2018
). “
Lax vox voice therapy technique
,” www.laxvox.com (Last viewed July 26, 2018).
78.
Simberg
,
S.
, and
Laine
,
A.
(
2007
). “
The resonance tube method in voice therapy: Description and practical implementations
,”
Logoped Phoniatr. Vocol.
32
(
4
),
165
170
.
79.
Sjölander
,
K.
, and
Beskow
,
J.
(
2000
). “
Wavesurfer-an open source speech tool
,” paper presented at the
Proceedings of International Conference on Spoken Language Processing
.
80.
Smith
,
S. L.
, and
Titze
,
I. R.
(
2017
). “
Characterization of flow-resistant tubes used for semi-occluded vocal tract voice training and therapy
,”
J. Voice
31
(
1
),
e111
e118
.
81.
Stevens
,
K. N.
(
2000
).
Acoustic Phonetics
(
The MIT Press
,
Cambridge, MA
).
82.
Stone
,
M.
,
Davis
,
E. P.
,
Douglas
,
A. S.
,
NessAiver
,
M.
,
Gullapalli
,
R.
,
Levine
,
W. S.
, and
Lundberg
,
A.
(
2001
). “
Modeling the motion of the internal tongue from tagged cine-MRI images
,”
J. Acoust. Soc. Am.
109
(
6
),
2974
2982
.
83.
Story
,
B. H.
, and
Bunton
,
K.
(
2015
). “
Formant measurement in children's speech based on spectral filtering
,”
Speech Commun.
76
,
93
111
.
84.
Story
,
B. H.
,
Laukkanen
,
A. M.
, and
Titze
,
I. R.
(
2000
). “
Acoustic impedance of an artificially lengthened and constricted vocal tract
,”
J. Voice
14
(
4
),
455
469
.
85.
Švec
,
J. G.
,
Horacek
,
J.
,
Sram
,
F.
, and
Vesely
,
J.
(
2000
). “
Resonance properties of the vocal folds: In vivo laryngoscopic investigation of the externally excited laryngeal vibrations
,”
J. Acoust. Soc. Am.
108
(
4
),
1397
1407
.
86.
Švec
,
J. G.
,
Titze
,
I. R.
, and
Popolo
,
P. S.
(
2005
). “
Estimation of sound pressure levels of voiced speech from skin vibration of the neck
,”
J. Acoust. Soc. Am.
117
(3
),
1386
1394
.
87.
Titze
,
I. R.
(
1988
). “
The physics of small-amplitude oscillation of the vocal folds
,”
J. Acoust. Soc. Am.
83
(
4
),
1536
1552
.
88.
Titze
,
I. R.
(
2001
). “
Acoustic interpretation of resonant voice
,”
J. Voice
15
(
4
),
519
528
.
89.
Titze
,
I. R.
(
2006
). “
Voice training and therapy with a semi-occluded vocal tract: Rationale and scientific underpinnings
,”
J. Speech Lang. Hear. Res.
49
(
2
),
448
459
.
90.
Titze
,
I. R.
(
2008
). “
Nonlinear source-filter coupling in phonation: Theory
,”
J. Acoust. Soc. Am.
123
(
5
),
2733
2749
.
91.
Titze
,
I. R.
(
2009
). “
Phonation threshold pressure measurement with a semi-occluded vocal tract
,”
J. Speech Lang. Hear. Res.
52
(
4
),
1062
1072
.
92.
Titze
,
I. R.
,
Baken
,
R. J.
,
Bozeman
,
K.
,
Granqvist
,
S.
,
Henrich
,
N.
,
Herbst
,
C. T.
,
Howard
,
D. M.
,
Hunter
,
E. J.
,
Kaelin
,
D.
,
Kent
,
R. D.
,
Kreiman
,
J.
,
Kob
,
M.
,
Löfqvist
,
A.
,
McCoy
,
S.
,
Miller
,
D. G.
,
Noé
,
H.
,
Scherer
,
R. C.
,
Smith
,
J. R.
,
Story
,
B. H.
,
Švec
,
J. G.
,
Ternström
,
S.
, and
Wolfe
,
J.
(
2015
). “
Toward a consensus on symbolic notation of harmonics, resonances, and formants in vocalization
,”
J. Acoust. Soc. Am.
137
(
5
),
3005
3007
.
93.
Titze
,
I.
, and
Laukkanen
,
A. M.
(
2007
). “
Can vocal economy in phonation be increased with an artificially lengthened vocal tract? A computer modeling study
,”
Logoped Phoniatr. Vocol.
32
,
147
156
.
94.
Titze
,
I. R.
,
Laukkanen
,
A. M.
,
Finnegan
,
E. M.
, and
Jaiswal
,
S.
(
2002
). “
Raising lung pressure and pitch in vocal warm-ups: The use of flow-resistant straws
,”
J. Sing.
58
(
4
),
329
338
.
95.
Titze
,
I. R.
,
Riede
,
T.
, and
Popolo
,
P.
(
2008
). “
Nonlinear source-filter coupling in phonation: Vocal exercises
,”
J. Acoust. Soc. Am.
123
(
4
),
1902
1915
.
96.
Titze
,
I. R.
, and
Story
,
B. H.
(
1997
). “
Acoustic interactions of the voice source with the lower vocal tract
,”
J. Acoust. Soc. Am.
101
(
4
),
2234
2243
.
97.
Vallabha
,
G. K.
, and
Tuller
,
B.
(
2002
). “
Systematic errors in the formant analysis of steady-state vowels
,”
Speech Commun.
38
,
141
160
.
98.
Vampola
,
T.
,
Laukkanen
,
A. M.
,
Horacek
,
J.
, and
Švec
,
J. G.
(
2011
). “
Vocal tract changes caused by phonation into a tube: A case study using computer tomography and finite-element modeling
,”
J. Acoust. Soc. Am.
129
(
1
),
310
315
.
99.
van den Berg
,
J. P.
(
1960
). “
An electrical analogue of the trachea, lungs and tissue
,”
Acta Physiol. Pharmacol. Neerl
9
,
361
385
.
100.
Vorperian
,
H. K.
,
Wang
,
S.
,
Chung
,
M. K.
,
Schimek
,
E. M.
,
Durtschi
,
R. B.
,
Kent
,
R. D.
,
Ziegert
,
A. J.
, and
Gentry
,
L. R.
(
2009
). “
Anatomic development of the oral and pharyngeal portions of the vocal tract: An imaging study
,”
J. Acoust. Soc. Am.
125
(
3
),
1666
1678
.
101.
Wade
,
L.
,
Hanna
,
N.
,
Smith
,
J.
, and
Wolfe
,
J.
(
2017
). “
The role of vocal tract and subglottal resonances in producing vocal instabilities
,”
J. Acoust. Soc. Am.
141
(
3
),
1546
.
102.
Wilson
,
T. D.
(
1996
). “
The measured upstream impedance for clarinet performance and its role in sound production
,” doctoral dissertation, University of Washington, Seattle.
103.
Wu
,
L.
,
Xiao
,
K.
,
Dong
,
J.
,
Wang
,
S.
, and
Wan
,
M.
(
2014
). “
Measurement of the sound transmission characteristics of normal neck tissue using a reflectionless uniform tube
,”
J. Acoust. Soc. Am.
136
(
1
),
350
356
.
104.
Yeung
,
G.
,
Lulich
,
S. M.
,
Guo
,
J.
,
Sommers
,
M. S.
, and
Alwan
,
A.
(
2018
). “
Subglottal resonances of American English speaking children
,”
J. Acoust. Soc. Am.
144
(
6
),
3437
3449
.
105.
Zañartu
,
M.
,
Ho
,
J. C.
,
Mehta
,
D. D.
,
Hillman
,
R. E.
, and
Wodicka
,
G. R.
(
2013
). “
Subglottal impedance-based inverse filtering of voiced sounds using neck surface acceleration
,”
IEEE Trans. Audio Speech Lang. Process.
21
(
9
),
1929
1939
.
106.
Zañartu
,
M.
,
Mongeau
,
L.
, and
Wodicka
,
G. R.
(
2007
). “
Influence of acoustic loading on an effective single mass model of the vocal folds
,”
J. Acoust. Soc. Am.
121
(
2
),
1119
1129
.
You do not currently have access to this content.