The estimation of formant frequencies from acoustic speech signals is mostly based on Linear Predictive Coding (LPC) algorithms. Since LPC is based on the source-filter model of speech production, the formant frequencies obtained are often implicitly regarded as those for an infinite glottal impedance, i.e., a closed glottis. However, previous studies have indicated that LPC-based formant estimates of vowels generated with a realistically varying glottal area may substantially differ from the resonances of the vocal tract with a closed glottis. In the present study, the deviation between closed-glottis resonances and LPC-estimated formants during phonation with different peak glottal areas has been systematically examined both using physical vocal tract models excited with a self-oscillating rubber model of the vocal folds, and by computer simulations of interacting source and filter models. Ten vocal tract resonators representing different vowels have been analyzed. The results showed that F1 increased with the peak area of the time-varying glottis, while F2 and F3 were not systematically affected. The effect of the peak glottal area on F1 was strongest for close-mid to close vowels, and more moderate for mid to open vowels.

1.
Alipour
,
F.
, and
Vigmostad
,
S.
(
2012
). “
Measurement of vocal folds elastic properties for continuum modeling
,”
J. Voice
26
(
6
),
816.e21
816.e29
.
2.
Alku
,
P.
,
Pohjalainen
,
J.
,
Vainio
,
M.
,
Laukkanen
,
A.-M.
, and
Story
,
B. H.
(
2013
). “
Formant frequency estimation of high-pitched vowels using weighted linear prediction
,”
J. Acoust. Soc. Am.
134
(
2
),
1295
1313
.
3.
Badin
,
P.
, and
Fant
,
G.
(
1984
). “
Notes on vocal tract computation
,”
STL-QPSR
2–3
,
53
108
.
4.
Barney
,
A.
,
De Stefano
,
A.
, and
Henrich
,
N.
(
2007
). “
The effect of glottal opening on the acoustic response of the vocal tract
,”
Acta Acust. united Ac.
93
(
6
),
1046
1056
.
5.
Birkholz
,
P.
(
2005
).
3D-Artikulatorische Sprachsynthese
(
Logos Verlag
,
Berlin
).
6.
Birkholz
,
P.
(
2013
). “
Modeling consonant-vowel coarticulation for articulatory speech synthesis
,”
PLoS One
8
(
4
),
e60603
.
7.
Birkholz
,
P.
(
2016
). “
GlottalImageExplorer—An open source tool for glottis segmentation in endoscopic high-speed videos of the vocal folds
,” in
Studientexte zur Sprachkommunikation: Elektronische Sprachsignalverarbeitung 2016
, edited by
O.
Jokisch
(
TUDPress
,
Dresden, Germany
), pp.
39
44
.
8.
Birkholz
,
P.
(
2017
). “
VocalTractLab [computer software]
http://www.vocaltractlab.de (Last viewed 2 July 2019).
9.
Birkholz
,
P.
, and
Jackèl
,
D.
(
2004
). “
Influence of temporal discretization schemes on formant frequencies and bandwidths in time domain simulations of the vocal tract system
,” in
Proceedings of Interspeech 2004-ICSLP
, October 4–8, Jeju, Korea, pp.
1125
1128
.
10.
Birkholz
,
P.
,
Jackèl
,
D.
, and
Kröger
,
B. J.
(
2007
). “
Simulation of losses due to turbulence in the time-varying vocal system
,”
IEEE Trans. Audio Speech Lang. Process.
15
(
4
),
1218
1226
.
11.
Boersma
,
P.
, and
Weenik
,
D.
(
2017
). “
Praat: Doing phonetics by computer [computer program]
http://www.praat.org/ (Last viewed 2 July 2019).
12.
Chhetri
,
D. K.
,
Zhang
,
Z.
, and
Neubauer
,
J.
(
2011
). “
Measurement of Young's modulus of vocal folds by indentation
,”
J. Voice
25
(
1
),
1
7
.
13.
Childers
,
D. G.
(
1978
).
Modern Spectrum Analysis
(
IEEE Computer Society Press
,
Piscataway, NJ
).
14.
Childers
,
D. G.
, and
Wong
,
C.-F.
(
1994
). “
Measuring and modeling vocal source-tract interaction
,”
IEEE Trans. Biomed. Eng.
41
(
7
),
663
671
.
15.
Delvaux
,
B.
, and
Howard
,
D.
(
2014
). “
A new method to explore the spectral impact of the piriform fossae on the singing voice: Benchmarking using MRI-based 3D-printed vocal tracts
,”
PLoS One
9
(
7
),
1
15
.
16.
Fant
,
G.
(
1960
).
Acoustic Theory of Speech Production
(
Mouton
,
The Hague, the Netherlands
).
17.
Fant
,
G.
,
Liljencrants
,
J.
, and
guang Lin
,
Q.
(
1985
). “
A four-parameter model of glottal flow
,”
STL-QPSR
4
,
1
13
.
18.
Flanagan
,
J. L.
(
1965
).
Speech Analysis, Synthesis and Perception
(
Springer-Verlag
,
Berlin
).
19.
Fleischer
,
M.
,
Mainka
,
A.
,
Kürbis
,
S.
, and
Birkholz
,
P.
(
2018
). “
How to precisely measure the volume velocity transfer function of physical vocal tract models by external excitation
,”
PLoS One
13
(
3
),
1
16
.
20.
Fulop
,
S. A.
(
2007
). “
Phonetic applications of the time-corrected instantaneous frequency spectrogram
,”
Phonetica
64
(
4
),
237
262
.
21.
Gardner
,
T. J.
, and
Magnasco
,
M. O.
(
2006
). “
Sparse time-frequency representations
,”
Proc. Natl. Acad. Sci.
103
(
16
),
6094
6099
.
22.
Gowda
,
D.
,
Airaksinen
,
M.
, and
Alku
,
P.
(
2017
). “
Quasi-closed phase forward-backward linear prediction analysis of speech for accurate formant detection and estimation
,”
J. Acoust. Soc. Am.
142
(
3
),
1542
1553
.
23.
Kathiresan
,
T.
,
Maurer
,
D.
,
Suter
,
H.
, and
Dellwo
,
V.
(
2017
). “
Enhancing the objectivity of interactive formant estimation: Introducing Euclidean distance measure and numerical conditions for numbers and frequency ranges of formants
,” in
Studientexte zur Sprachkommunikation: Elektronische Sprachsignalverarbeitung 2017
, edited by
J.
Trouvain
,
I.
Steiner
, and
B.
Möbius
(
TUDPress
,
Dresden, Germany
), pp.
130
137
.
24.
Kewley-Port
,
D.
, and
Watson
,
C. S.
(
1994
). “
Formant-frequency discrimination for isolated English vowels
,”
J. Acoust. Soc. Am.
95
(
1
),
485
496
.
25.
Mendelsohn
,
A. H.
, and
Zhang
,
Z.
(
2011
). “
Phonation threshold pressure and onset frequency in a two-layer physical model of the vocal folds
,”
J. Acoust. Soc. Am.
130
(
5
),
2961
2968
.
26.
Murray
,
P. R.
, and
Thomson
,
S. L.
(
2012
). “
Vibratory responses of synthetic, self-oscillating vocal fold models
,”
J. Acoust. Soc. Am.
132
(
5
),
3428
3438
.
27.
Scherer
,
R. C.
,
Shinwari
,
D.
,
De Witt
,
K. J.
,
Zhang
,
C.
,
Kucinschi
,
B. R.
, and
Afjeh
,
A. A.
(
2001
). “
Intraglottal pressure profiles for a symmetric and oblique glottis with a divergence angle of 10 degrees
,”
J. Acoust. Soc. Am.
109
(
4
),
1616
1630
.
28.
Shadle
,
C. H.
,
Nam
,
H.
, and
Whalen
,
D.
(
2016
). “
Comparing measurement errors for formants in synthetic and natural vowels
,”
J. Acoust. Soc. Am.
139
(
2
),
713
727
.
29.
Summers
,
W. V.
,
Pisoni
,
D. B.
,
Bernacki
,
R. H.
,
Pedlow
,
R. I.
, and
Stokes
,
M. A.
(
1988
). “
Effects of noise on speech production: Acoustic and perceptual analyses
,”
J. Acoust. Soc. Am.
84
(
3
),
917
928
.
30.
Titze
,
I. R.
,
Baken
,
R. J.
,
Bozeman
,
K. W.
,
Granqvist
,
S.
,
Henrich
,
N.
,
Herbst
,
C. T.
,
Howard
,
D. M.
,
Hunter
,
E. J.
,
Kaelin
,
D.
,
Kent
,
R. D.
,
Kreiman
,
J.
,
Kob
,
M.
,
Löfqvist
,
A.
,
McCoy
,
S.
,
Miller
,
D. G.
,
Noé
,
H.
,
Scherer
,
R. C.
,
Smith
,
J. R.
,
Story
,
B. H.
,
Švec
,
J. G.
,
Ternström
,
S.
, and
Wolfe
,
J.
(
2015
). “
Toward a consensus on symbolic notation of harmonics, resonances, and formants in vocalization
,”
J. Acoust. Soc. Am.
137
(
5
),
3005
3007
.
31.
Titze
,
I. R.
, and
Palaparthi
,
A.
(
2016
). “
Sensitivity of source–filter interaction to specific vocal tract shapes
,”
IEEE/ACM Trans. Audio Speech Lang. Process.
24
(
12
),
2507
2515
.
32.
Uezu
,
Y.
, and
Kaburagi
,
T.
(
2017
). “
A simulation study on the effect of glottal boundary conditions on vocal tract formants
,” in
Proceedings of Interspeech 2017
, August 20–24, Stockholm, Sweden, pp.
2292
2296
.
33.
Vallabha
,
G. K.
, and
Tuller
,
B.
(
2002
). “
Systematic errors in the formant analysis of steady-state vowels
,”
Speech Commun.
38
(
1–2
),
141
160
.
34.
Xuan
,
Y.
, and
Zhang
,
Z.
(
2014
). “
Influence of embedded fibers and an epithelium layer on the glottal closure pattern in a physical vocal fold model
,”
J. Speech Lang. Hear. Res.
57
(
2
),
416
425
.
35.
Zhang
,
Z.
(
2016
). “
Mechanics of human voice production and control
,”
J. Acoust. Soc. Am.
140
(
4
),
2614
2635
.
You do not currently have access to this content.