The sound field separation methods can separate the target field from the interfering noises, facilitating the study of the acoustic characteristics of the target source, which is placed in a noisy environment. However, most of the existing sound field separation methods are derived in the frequency-domain, thus they are best suited for separating stationary sound fields. In this paper, a time-domain sound field separation method is developed that can separate the non-stationary sound field generated by the target source over a sphere in real-time. A spherical array sets up a boundary between the target source and the interfering sources, such that the outgoing field on the array is only generated by the target source. The proposed method decomposes the pressure and the radial particle velocity measured by the array into spherical harmonic coefficients, and recovers the target outgoing field based on the time-domain relationship between the decomposition coefficients and the theoretically derived spatial filter responses. Simulations show the proposed method can separate non-stationary sound fields both in free field and room environments, and over a longer duration with small errors. The proposed method could serve as a foundation for developing future time-domain spatial sound field manipulation algorithms.

1.
E. G.
Williams
,
Fourier Acoustics: Sound Radiation and Nearfield Acoustical Holography
(
Academic Press
,
New York
,
1999
), Chaps. 6–7, pp.
183
249
.
2.
G.
Weinreich
and
E. B.
Arnold
, “
Method for measuring acoustic radiation fields
,”
J. Acoust. Soc. Am.
68
(
2
),
404
411
(
1980
).
3.
M.
Melon
,
C.
Langrenne
,
P.
Herzog
, and
A.
Garcia
, “
Evaluation of a method for the measurement of subwoofers in usual rooms
,”
J. Acoust. Soc. Am.
127
(
1
),
256
263
(
2010
).
4.
Y.
Braikia
,
M.
Melon
,
C.
Langrenne
, and
A.
Garcia
, “
Evaluation of a separation method for source identification in small spaces
,”
J. Acoust. Soc. Am.
134
(
1
),
323
331
(
2013
).
5.
S.
Lobréau
,
É.
Bavu
, and
M.
Melon
, “
Hemispherical double-layer time reversal imaging in reverberant and noisy environments at audible frequencies
,”
J. Acoust. Soc. Am.
137
(
2
),
785
796
(
2015
).
6.
M.
Tamura
, “
Spatial Fourier Transform method of measuring reflection coefficients at oblique incidence. I: Theory and numerical examples
,”
J. Acoust. Soc. Am.
88
(
5
),
2259
2264
(
1990
).
7.
F.
Jacobsen
and
V.
Jaud
, “
Statistically optimized near field acoustic holography using an array of pressure-velocity probes
,”
J. Acoust. Soc. Am.
121
(
3
),
1550
1558
(
2007
).
8.
C.
Langrenne
,
M.
Melon
, and
A.
Garcia
, “
Boundary element method for the acoustic characterization of a machine in bounded noisy environment
,”
J. Acoust. Soc. Am.
121
(
5
),
2750
2757
(
2007
).
9.
C.
Langrenne
,
M.
Melon
, and
A.
Garcia
, “
Measurement of confined acoustic sources using near-field acoustic holography
,”
J. Acoust. Soc. Am.
126
(
3
),
1250
1256
(
2009
).
10.
C.
Bi
,
X.
Chen
, and
J.
Chen
, “
Sound field separation technique based on equivalent source method and its application in nearfield acoustic holography
,”
J. Acoust. Soc. Am.
123
(
3
),
1472
1478
(
2008
).
11.
C.
Bi
and
B. J.
Stuart
, “
An equivalent source technique for recovering the free sound field in a noisy environment
,”
J. Acoust. Soc. Am.
131
(
2
),
1260
1270
(
2012
).
12.
E.
Fernandez-Grande
,
F.
Jacobsen
, and
Q.
Leclere
, “
Sound field separation with sound pressure and particle velocity measurements
,”
J. Acoust. Soc. Am.
132
(
6
),
3818
3825
(
2012
).
13.
F.
Ma
,
W.
Zhang
, and
T. D.
Abhayapala
, “
Reference signal generation for broadband ANC systems in reverberant rooms
,” in
Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
,
Calgary, Canada
(
April 15–20
,
2018
), pp.
216
220
.
14.
X.
Zhang
,
J. H.
Thomas
, and
J. C.
Pascal
, “
Separation of non-stationary sound fields in the time-wavenumber domain
,”
J. Acoust. Soc. Am.
131
(
3
),
2180
2189
(
2012
).
15.
C.
Bi
,
L.
Geng
, and
X.
Zhang
, “
Real-time separation of non-stationary sound fields with pressure and particle acceleration measurements
,”
J. Acoust. Soc. Am.
135
(
6
),
3474
3482
(
2014
).
16.
C.
Bi
,
L.
Geng
, and
X.
Zhang
, “
Separation of non-stationary multi-source sound field based on the interpolated time-domain equivalent source method
,”
Mech. Syst. Signal Process.
72
,
745
761
(
2016
).
17.
C.
Bi
,
L.
Geng
, and
X.
Zhang
, “
Separation of non-stationary sound fields with a single layer pressure-velocity measurements
,”
J. Acoust. Soc. Am.
139
(
2
),
781
789
(
2016
).
18.
H.
Kuttruff
,
Room Acoustics
(
CRC Press
,
Boca Raton
,
2014
), pp.
1
392
.
19.
J. B.
Allen
and
D. A.
Berkley
, “
Image method for efficiently simulating small-room acoustics
,”
J. Acoust. Soc. Am.
65
(
4
),
943
950
(
1979
).
20.
M. A.
Poletti
, “
Unified description of ambisonics using real and complex spherical harmonics
,” in
Proceedings of the Ambisonics Symposium
,
Graz, Austria
(
June 25–27
,
2009
), pp.
1
10
.
21.
F.
Ma
,
W.
Zhang
, and
T. D.
Abhayapala
, “
Active control of outgoing noise fields in rooms
,”
J. Acoust. Soc. Am.
144
(
3
),
1589
1599
(
2018
).
22.
M.
Abramowitz
and
I. A.
Stegun
,
Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables
(
National Bureau of Standards
,
Washington, DC
,
1964
), pp.
355
435
.
23.
B.
Rafaely
,
Fundamentals of Spherical Array Processing
(
Springer
,
New York
,
2015
), Chap. 3, pp.
57
78
.
24.
D. B.
Ward
and
T. D.
Abhayapala
, “
Reproduction of a plane-wave sound field using an array of loudspeakers
,”
IEEE Trans. Speech Audio Process.
9
(
6
),
697
707
(
2001
).
25.
H. E.
de Bree
, “
The microflown: An acoustic particle velocity sensor
,”
Acoust. Aust.
31
(
3
),
91
94
(
2003
).
26.
J. W.
Parkins
,
S. D.
Sommerfeldt
, and
J.
Tichy
, “
Narrowband and broadband active control in an enclosure using the acoustic energy density
,”
J. Acoust. Soc. Am.
108
(
1
),
192
203
(
2000
).
27.
N.
Sloane
, “
Spherical codes: Nice arrangements of points on a sphere in various dimensions
,” http://neilsloane.com/packings/ (Last viewed 10 June 2019).
28.
I. S.
Gradshteyn
and
I. M.
Ryshik
,
Table of Integrals, Series, and Products
, 5th ed. (
Academic Press
,
New York
,
1994
), p.
1185
.
You do not currently have access to this content.