Acoustic recordings were made during the installation of four offshore wind turbines at the Block Island Wind Farm, Rhode Island, USA. The turbine foundations have four legs inclined inward in a pyramidal configuration. Four bottom mounted acoustic recorders measured received sound levels at distances of 541–9067 m during 24 pile driving events. Linear mixed models based on damped cylindrical spreading were used to analyze the data. The model's random effects coefficients represented useful information about variability in the acoustic propagation conditions. The received sound levels were dependent on the angle between pile and seabed, strike energy, and pile penetration (PP). Deeper PPs increased sound levels in a frequency dependent manner. The estimated area around the piles where auditory injury and disturbance to marine life could occur were not circular and changed by up to an order of magnitude between the lowest and highest sound level cases. The study extends earlier results showing a linear relationship between the peak sound pressure level and per-strike sound exposure level. Recommendations are made for how to collect and analyze pile driving data. The results will inform regulatory mitigations of the effects of pile driving sound on marine life, and contribute to developing improved pile driving source models.

1.
Ainslie
,
M. A.
,
Dahl
,
P. H.
,
De Jong
,
C. A. F.
, and
Laws
,
R. M.
(
2014
). “
Practical spreading laws: The snakes and ladders of shallow water acoustics
,” in
UA2014-2nd International Conference and Exhibition on Underwater Acoustics
(Island of Rhodes, Greece), pp.
879
-
886
.
2.
ANSI
(
2006
). ANSI S1.4-1983.
American National Standard Specification for Sound Level Meters
(
American National Standards Institute
,
New York
).
3.
Bailey
,
H.
,
Senior
,
B.
,
Simmons
,
D.
,
Rusin
,
J.
,
Picken
,
G.
, and
Thompson
,
P. M.
(
2010
). “
Assessing underwater noise levels during pile-driving at an offshore windfarm and its potential effects on marine mammals
,”
Mar. Pollut. Bull.
60
,
888
897
.
4.
Betke
,
K.
(
2008
). “
Measurement of wind turbine construction noise at Horns Rev II
,” Technical report by Institut für technische und angewandte Physik GmbH (ITAP) for BioConsultSH, Husun, Germany, p.
30
.
5.
Brandt
,
M. J.
,
Diederichs
,
A.
,
Betke
,
K.
, and
Nehls
,
G.
(
2011
). “
Responses of harbour porpoises to pile driving at the Horns Rev II offshore wind farm in the Danish North Sea
,”
Mar. Ecol. Prog. Ser.
421
,
205
216
.
6.
Casper
,
B. M.
,
Halvorsen
,
M. B.
,
Carlson
,
T. J.
, and
Popper
,
A. N.
(
2017
). “
Onset of barotrauma injuries related to number of pile driving strike exposures in hybrid striped bass
,”
J. Acoust. Soc. Am.
141
,
4380
4387
.
7.
Casper
,
B. M.
,
Smith
,
M. E.
,
Halvorsen
,
M. B.
,
Sun
,
H.
,
Carlson
,
T. J.
, and
Popper
,
A. N.
(
2013
). “
Effects of exposure to pile driving sounds on fish inner ear tissues
,”
Comp. Biochem. Physiol. A Mol. Integr. Physiol.
166
,
352
360
.
8.
Dahl
,
P. H.
(
2015
). “
The underwater sound field from impact pile driving and its potential effects on marine life
,”
Acoust. Today
11
, 7(2),
18
25
, available at https://acousticstoday.org/the-underwater-sound-field-from-impact-pile-driving-and-its-potential-effects-on-marine-life-peter-h-dahl-christ-a-f-de-jong-and-arthur-n-popper.
9.
Dahl
,
P. H.
, and
Dall'Osto
,
D. R.
(
2017
). “
On the underwater sound field from impact pile driving: Arrival structure, precursor arrivals, and energy streamlines
,”
J. Acoust. Soc. Am.
142
,
1141
1155
.
10.
Dähne
,
M.
,
Gilles
,
A.
,
Lucke
,
K.
,
Peschko
,
V.
,
Adler
,
S.
,
Krügel
,
K.
,
Sundermeyer
,
J.
, and
Siebert
,
U.
(
2013
). “
Effects of pile-driving on harbour porpoises (Phocoena phocoena) at the first offshore wind farm in Germany
,”
Environ. Res. Lett.
8
,
025002
.
11.
Erbe
,
C.
(
2013
). “
International regulation of underwater noise
,”
Acoust. Aust.
41
,
12
19
, available at http://hdl.handle.net/20.500.11937/30038.
12.
Erbe
,
C.
,
Reichmuth
,
C.
,
Cunningham
,
K.
,
Lucke
,
K.
, and
Dooling
,
R.
(
2016
). “
Communication masking in marine mammals: A review and research strategy
,”
Mar. Pollut. Bull.
103
,
15
38
.
13.
Finneran
,
J. J.
(
2015
). “
Noise-induced hearing loss in marine mammals: A review of temporary threshold shift studies from 1996 to 2015
,”
J. Acoust. Soc. Am.
138
,
1702
1726
.
14.
Finneran
,
J. J.
,
Schlundt
,
C. E.
,
Dear
,
R.
,
Carder
,
D. A.
, and
Ridgway
,
S. H.
(
2002
). “
Temporary shift in masked hearing thresholds in odontocetes after exposure to single underwater impulses from a seismic watergun
,”
J. Acoust. Soc. Am.
111
,
2929
2940
.
15.
Finneran
,
J. J.
,
Trickey
,
J. S.
,
Branstetter
,
B. K.
,
Schlundt
,
C. E.
, and
Jenkins
,
K.
(
2011
). “
Auditory effects of multiple underwater impulses on bottlenose dolphins (Tursiops truncatus)
,”
J. Acoust. Soc. Am.
130
,
2561
2561
.
16.
Fisheries Hydroacoustic Working Group (FHWG)
(
2008
). “
Agreement in principle for interim criteria for injury to fish from pile driving activities
,” available at http://www.dot.ca.gov/hq/env/bio/files/fhwgcriteria_agree.pdf.
17.
François
,
R. E.
, and
Garrison
,
G. R.
(
1982
). “
Sound absorption based on ocean measurements: Part II: Boric acid contribution and equation for total absorption
,”
J. Acoust. Soc. Am.
72
,
1879
1890
.
18.
Halvorsen
,
M. B.
,
Casper
,
B. M.
,
Woodley
,
C. M.
,
Carlson
,
T. J.
, and
Popper
,
A. N.
(
2011
). “
Hydroacoustic impacts on fish from pile installation
,” (National Cooperative Highway Research Program, Transportation Research Board, National Academy of Sciences, Washington, DC).
19.
Halvorsen
,
M. B.
,
Casper
,
B. M.
,
Woodley
,
C. M.
,
Carlson
,
T. J.
, and
Popper
,
A. N.
(
2012
). “
Threshold for onset of injury in Chinook salmon from exposure to impulsive pile driving sounds
,”
PLoS One
7
,
e38968
.
20.
ISO
(
2017
). 18405.2:2017,
Underwater acoustics—Terminology
(
International Organization for Standardization
,
Geneva, Switzerland
).
21.
Kandia
,
V.
, and
Stylianou
,
Y.
(
2006
). “
Detection of sperm whale clicks based on the Teager-Kaiser energy operator
,”
Appl. Acoust.
67
,
1144
1163
.
22.
Kastelein
,
R. A.
,
Helder-Hoek
,
L.
,
Van de Voorde
,
S.
,
von Benda-Beckmann
,
A. M.
,
Lam
,
F.-P. A.
,
Jansen
,
E.
,
de Jong
,
C. A. F.
, and
Ainslie
,
M. A.
(
2017
). “
Temporary hearing threshold shift in a harbor porpoise (Phocoena phocoena) after exposure to multiple airgun sounds
,”
J. Acoust. Soc. Am.
142
,
2430
2442
.
23.
Koller
,
M.
(
2016
). “
robustlmm: An R package for robust estimation of linear mixed-effects models
,”
J. Statist. Software
75
,
1
24
.
24.
Lippert
,
T.
,
Ainslie
,
M. A.
, and
von Estorff
,
O.
(
2018
). “
Pile driving acoustics made simple: Damped cylindrical spreading model
,”
J. Acoust. Soc. Am.
143
,
310
317
.
25.
Lippert
,
T.
,
Galindo-Romero
,
M.
,
Gavrilov
,
A. N.
, and
von Estorff
,
O.
(
2015
). “
Empirical estimation of peak pressure level from sound exposure level. Part II: Offshore impact pile driving noise
,”
J. Acoust. Soc. Am.
138
,
EL287
EL292
.
26.
Lippert
,
S.
,
Nijhof
,
M.
,
Lippert
,
T.
,
Wilkes
,
D.
,
Gavrilov
,
A.
,
Heitmann
,
K.
,
Ruhnau
,
M.
,
von Estorff
,
O.
,
Schäfke
,
A.
,
Schäfer
,
I.
,
Ehrlich
,
J.
,
MacGillivray
,
A. O.
,
Park
,
J.
,
Seong
,
W.
,
Ainslie
,
M. A.
,
deJong
,
C.
,
Wood
,
M. A.
,
Wang
,
L.
, and
Theobald
,
P.
(
2016
). “
COMPILE—A generic benchmark case for predictions of marine pile-driving noise
,”
IEEE J. Ocean. Eng.
41
,
1061
1071
.
27.
Lippert
,
T.
, and
von Estorff
,
O.
(
2014
). “
The significance of parameter uncertainties for the prediction of offshore pile driving noise
,”
J. Acoust. Soc. Am.
136
,
2463
2471
.
28.
Lucke
,
K.
,
Siebert
,
U.
,
Lepper
,
P. A.
, and
Blanchet
,
M.-A.
(
2009
). “
Temporary shift in masked hearing thresholds in a harbor porpoise (Phocoena phocoena) after exposure to seismic airgun stimuli
,”
J. Acoust. Soc. Am.
125
,
4060
4070
.
29.
Lucke
,
K.
,
Winter
,
E.
,
Lam
,
F.-P.
,
Scowcroft
,
G.
,
Hawkins
,
A.
, and
Popper
,
A. N.
(
2014
). “
International harmonization of approaches to define underwater noise exposure criteria
,”
J. Acoust. Soc. Am.
135
,
2404
.
30.
MacGillivray
,
A.
(
2018
). “
Underwater noise from pile driving of conductor casing at a deep-water oil platform
,”
J. Acoust. Soc. Am.
143
,
450
459
.
31.
MacGillivray
,
A. O.
(
2014
). “
A model for underwater sound levels generated by marine impact pile driving
,”
Proc. Mtgs. Acoust.
20
,
045008
.
32.
Madsen
,
P. T.
,
Wahlberg
,
M.
,
Tougaard
,
J.
,
Lucke
,
K.
, and
Tyack
,
P. L.
(
2006
). “
Wind turbine underwater noise and marine mammals: Implications of current knowledge and data needs
,”
Mar. Ecol. Prog. Ser.
309
,
279
295
.
33.
Martin
,
B.
,
MacDonnell
,
J. T.
,
MacGillivray
,
A. O.
, and
Hannay
,
D. E.
(
2016
). “
Comparing methods for estimating the injury and behavioral disturbance radii from sound source characterization measurements
,”
J. Acoust. Soc. Am.
139
,
2147
2148
.
34.
Matuschek
,
R.
, and
Betke
,
K.
(
2009
). “
Measurements of construction noise during pile driving of offshore research platforms and wind farms
,” in
Proceedings of NAG-DAGA 2009 International Conference on Acoustics
, pp.
262
265
.
35.
National Marine Fisheries Service (U.S.) (NMFS)
(
2016
). “
Technical guidance for assessing the effects of anthropogenic sound on marine mammal hearing: Underwater acoustic thresholds for onset of permanent and temporary threshold shifts
,” NOAA Technical Memorandum NMFS-OPR-55 (U.S. Department of Commerce, National Oceanic and Atmospheric Administration, Silver Spring, MD), p.
178
.
36.
National Marine Fisheries Service (U.S.) (NMFS)
(
2018
). “
2018 revision to: Technical guidance for assessing the effects of anthropogenic sound on marine mammal hearing (version 2.0): Underwater thresholds for onset of permanent and temporary threshold shifts
,” NOAA Technical Memorandum NMFS-OPR-59 (U.S. Department of Commerce, National Oceanic and Atmospheric Administration, Silver Spring, MD), p.
167
.
37.
National Marine Fisheries Service (U.S.) (NMFS), and National Oceanic and Atmospheric Administration (U.S.) (NOAA)
(
1995
). “
Small takes of marine mammals incidental to specified activities; offshore seismic activities in southern California: Notice of issuance of an incidental harassment authorization
,”
Fed. Regist.
60
,
53753
53760
.
38.
National Oceanic and Atmospheric Administration (U.S.) (NOAA)
(
2012
). “
Guidance document: Data collection methods to characterize impact and vibratory pile driving source levels relevant to marine mammals
,” Memorandum from NMFS Northwest Region and Northwest Fisheries Science Center (U.S. Department of Commerce, National Marine Fisheries Service, Seattle, WA),
7
pp.
39.
National Oceanic and Atmospheric Administration (U.S.) (NOAA)
(
2013
). “
Draft guidance for assessing the effects of anthropogenic sound on marine mammals: Acoustic threshold levels for onset of permanent and temporary threshold shifts
,” (National Oceanic and Atmospheric Administration, U.S. Department of Commerce, and NMFS Office of Protected Resources, Silver Spring, MD), p.
76
.
40.
National Oceanic and Atmospheric Administration (U.S.) (NOAA)
(
2015
). “
Draft guidance for assessing the effects of anthropogenic sound on marine mammal hearing: Underwater acoustic threshold levels for onset of permanent and temporary threshold shifts
,” (NMFS Office of Protected Resources, Silver Spring, MD), p.
180
.
41.
Newhall
,
A. E.
,
Lin
,
Y. T.
,
Miller
,
J. F.
,
Potty
,
G. R.
,
Vigness-Raposa
,
K.
,
Frankel
,
A.
,
Giard
,
J.
,
Gallien
,
D. R.
,
Elliot
,
J.
, and
Mason
,
T.
(
2016
). “
Monitoring the acoustic effects of pile driving for the first offshore wind farm in the United States
,”
J. Acoust. Soc. Am.
139
,
2181
2181
.
42.
Pinheiro
,
J.
,
Bates
,
D.
,
DebRoy
,
S.
,
Sarkar
,
D.
, and
R Core Team
(
2017
). “
nlme: Linear and nonlinear mixed effects models (R package version 3.1-131)
,” available at https://mran.microsoft.com/snapshot/2017-02-20/web/packages/nlme/index.html (Last accessed 23 June 2019).
43.
Popper
,
A. N.
,
Hawkins
,
A. D.
,
Fay
,
R. R.
,
Mann
,
D. A.
,
Bartol
,
S.
,
Carlson
,
T. J.
,
Coombs
,
S.
,
Ellison
,
W. T.
,
Gentry
,
R. L.
,
Halvorsen
,
M. B.
,
Løkkeborg
,
S.
,
Rogers
,
P. H.
,
Southall
,
B. L.
,
Zeddies
,
D. G.
, and
Tavolga
,
W. N.
(
2014
). “
Sound exposure guidelines
,” in
Sound Exposure Guidelines for Fishes and Sea Turtles: A Technical Report Prepared by ANSI-Accredited Standards Committee S3/SC1 and registered with ANSI
(ASA S3/SC1.4 TR-2014), SpringerBriefs in Oceanography (
ASA Press and Springer
,
New York
).
44.
Popper
,
A. N.
,
Hawkins
,
A. D.
, and
Halvorsen
,
M. B.
(
2019
). “
Anthropogenic sound and fishes
,” Report by ICF for Washington State Department of Transportation, Research Office, p.
170
.
45.
Reinhall
,
P. G.
, and
Dahl
,
P. H.
(
2011
). “
An investigation of underwater sound propagation from pile driving
,” prepared for the State of Washington Department of Transportation, p.
39
.
46.
Robinson
,
S. P.
,
Lepper
,
P. A.
, and
Ablitt
,
J.
(
2007
). “
The measurement of the underwater radiated noise from marine piling including characterisation of a ‘soft start’ period
,” in
Oceans 2007-Europe
(
IEEE
,
Aberdeen, UK
), pp.
732
737
.
47.
Southall
,
B. L.
,
Finneran
,
J. J.
,
Reichmuth
,
C.
,
Nachtigall
,
P. E.
,
Ketten
,
D. R.
,
Bowles
,
A. E.
,
Ellison
,
W. T.
,
Nowacek
,
D. P.
, and
Tyack
,
P. L.
(
2019
). “
Marine mammal noise exposure criteria: Updated scientific recommendations for residual hearing effects
,”
Aquat. Mamm.
45
,
125
232
.
48.
Tougaard
,
J.
, and
Beedholm
,
K.
(
2019
). “
Practical implementation of auditory time and frequency weighting in marine bioacoustics
,”
Appl. Acoust.
145
,
137
143
.
49.
Tougaard
,
J.
,
Wright
,
A. J.
, and
Madsen
,
P. T.
(
2015
). “
Cetacean noise criteria revisited in the light of proposed exposure limits for harbour porpoises
,”
Mar. Pollut. Bull.
90
,
196
208
.
50.
Venables
,
W. N.
, and
Ripley
,
B. D.
(
2002
).
Modern Applied Statistics with S
(
Springer
,
New York
).
51.
Wilkes
,
D. R.
, and
Gavrilov
,
A. N.
(
2017
). “
Sound radiation from impact-driven raked piles
,”
J. Acoust. Soc. Am.
142
,
1
11
.
52.
Zampolli
,
M.
,
Nijhof
,
M. J. J.
,
de Jong
,
C. A. F.
,
Ainslie
,
M. A.
,
Jansen
,
E. H. W.
, and
Quesson
,
B. A. J.
(
2013
). “
Validation of finite element computations for the quantitative prediction of underwater noise from impact pile driving
,”
J. Acoust. Soc. Am.
133
,
72
81
.

Supplementary Material

You do not currently have access to this content.