Wavefield focusing is often achieved by time-reversal mirrors, where wavefields emitted by a source located at the focal point are evaluated at a closed boundary and sent back, after time-reversal, into the medium from that boundary. Mathematically, time-reversal mirrors are derived from closed-boundary integral representations of reciprocity theorems. In heterogeneous media, time-reversal focusing theoretically involves in- and output signals that are infinite in time and the resulting waves propagate through the entire medium. Recently, integral representations have been derived for single-sided wavefield focusing. Although the required input signals for this approach are finite in time, the output signals are not and, similar to time-reversal mirroring, the resulting waves propagate through the entire medium. Here, an alternative solution for double-sided wavefield focusing is derived. This solution is based on an integral representation where in- and output signals are finite in time, and where the energy of the waves propagating in the layer embedding the focal point is smaller than with time-reversal focusing. The potential of the proposed method is explored with numerical experiments involving a head model consisting of a skull enclosing a brain.

1.
M.
Fink
, “
Time-reversal mirrors
,”
J. Phys. D
26
,
1333
1350
(
1993
).
2.
K.
Wapenaar
,
E.
Slob
, and
R.
Snieder
, “
Unified Green's function retrieval by cross correlation
,”
Phys. Rev. Lett.
97
,
234301
(
2006
).
3.
M.
Fink
, “
Time-reversal acoustics in complex environments
,”
Geophysics
71
,
SI151
SI164
(
2006
).
4.
J. L.
Thomas
,
F.
Wu
, and
M.
Fink
, “
Ultrasonic beam focusing through tissue inhomogeneities with a time reversal mirror: Application to transskull therapy
,”
Ultrasonic Imag.
18
,
106
121
(
1996
).
5.
J. F.
Aubry
,
M.
Pernot
,
M.
Tanter
,
G.
Montaldo
, and
M.
Fink
, “
Ultrasonic arrays: New therapeutic developments
,”
J. Radiol.
88
,
1801
1809
(
2007
).
6.
S.
Catheline
,
M.
Fink
,
N.
Quieffin
, and
R. J.
Ing
, “
Acoustic source localization model using in-skull reverberation and time reversal
,”
Appl. Phys. Lett.
90
,
063902
(
2007
).
7.
Z.
Li
and
M.
van der Baan
, “
Microseismic event localization by acoustic time reversal extrapolation
,”
Geophysics
81
,
JS123
KS134
(
2016
).
8.
G. A.
McMechan
, “
Migration by extrapolation of time-dependent boundary values
,”
Geophys. Prospect.
31
,
413
420
(
1983
).
9.
M. K.
Oristaglio
, “
An inverse scattering formula that uses all the data
,”
Inv. Problems
5
,
1097
1105
(
1989
).
10.
J. H.
Rose
, “
Single-sided autofocusing of sound in layered media
,”
Inv. Problems
18
,
1923
1934
(
2002
).
11.
R.
Burridge
, “
The Gelfand-Levitan, the Marchenko and the Gopinath-Sondhi integral equations of inverse scattering theory, regarded in the context of inverse impulse-response problems
,”
Wave Motion
2
,
305
323
(
1980
).
12.
K.
Wapenaar
and
J.
Thorbecke
, “
Virtual sources and their responses, Part I: Time-reversal acoustics and seismic interferometry
,”
Geophys. Prospect.
65
,
1411
1429
(
2017
).
13.
F.
Broggini
and
R.
Snieder
, “
Connection of scattering principles: A visual and mathematical tour
,”
Eur. J. Phys.
33
,
593
613
(
2012
).
14.
K.
Wapenaar
,
J.
Thorbecke
,
J.
van der Neut
,
F.
Broggini
,
E.
Slob
, and
R.
Snieder
, “
Green's function retrieval from reflection data, in absence of a receiver at the virtual source position
,”
J. Acoust. Soc. Am.
135
,
2847
2861
(
2014
).
15.
G. A.
Meles
,
K.
Wapenaar
, and
J.
Thorbecke
, “
Virtual plane-wave imaging via Marchenko redatuming
,”
Geophys. J. Int.
214
,
508
519
(
2018
).
16.
M.
Ravasi
,
I.
Vasconcelos
,
A.
Kritski
,
A.
Curtis
,
C.
Alberto da Costa Filho
, and
G.
Meles
, “
Target-oriented Marchenko imaging of a North Sea field
,”
Geophys. J. Int.
205
,
99
104
(
2016
).
17.
K.
Wapenaar
,
J.
Thorbecke
, and
J.
van der Neut
, “
A single-sided homogeneous Green's function representation for holographic imaging, inverse scattering, time-reversal acoustics and interferometric Green's function retrieval
,”
Geophys. J. Int.
205
,
531
535
(
2016
).
18.
J. T.
Fokkema
and
P. M.
van den Berg
,
Seismic Applications of Acoustic Reciprocity
(
Elsevier Science Publishing Company
,
Amsterdam
,
1993
).
19.
K.
Wapenaar
,
J.
Thorbecke
,
J.
van der Neut
,
E.
Slob
, and
R.
Snieder
, “
Virtual sources and their responses, Part II: Data-driven single-sided focusing
,”
Geophys. Prospect.
65
,
1430
1451
(
2017
).
20.
L.
Fishman
, “
One-way wave propagation methods in direct and inverse scalar wave propagation modeling
,”
Radio Sci.
28
,
865
876
, (
1993
).
21.
N. N.
Bojarski
, “
Generalized reaction principles and reciprocity theorems for the wave equations, and the relationship between the time-advanced and time-retarded fields
,”
J. Acoust. Soc. Am.
74
,
281
285
(
1983
).
22.
J.
Thorbecke
,
E.
Slob
,
J.
Brackenhoff
,
J.
van der Neut
, and
K.
Wapenaar
, “
Implementation of the Marchenko method
,”
Geophysics
82
,
WB29
WB45
(
2017
).
23.
J.
van der Neut
,
I.
Vasconcelos
, and
K.
Wapenaar
, “
On Green's function retrieval by iterative substitution of the coupled Marchenko equations
,”
Geophys. J. Int.
203
,
792
813
(
2015
).
24.
M. I.
Iacono
,
E.
Neufeld
,
E.
Akinnagbe
,
K.
Bower
,
J.
Wolf
,
I. V.
Oikonomidis
,
D.
Sharma
,
B.
Lloyd
,
B. J.
Wilm
,
M.
Wyss
, and
K. P.
Pruessmann
, “
MIDA: A multimodal imaging-based detailed anatomical model of the human head and neck
,”
PloS One
10
,
0124126
(
2015
).
25.
R.
Snieder
,
K.
Wapenaar
, and
K.
Larner
, “
Spurious multiples in seismic interferometry of primaries
,”
Geophysics
71
,
SI111
SI124
(
2006
).
26.
A.
Hughes
and
K.
Hynynen
, “
Design of patient-specific focused ultrasound arrays for non-invasive brain therapy with increased trans-skull transmission and steering range
,”
Phys. Med. Biol.
17
,
L9
L19
(
2017
).
27.
E.
Slob
, “
Green's function retrieval and Marchenko imaging in a dissipative acoustic medium
,”
Phys. Rev. Lett.
116
,
164301
(
2016
).
You do not currently have access to this content.