Measurements of the ear-canal reflectance using an ear probe require estimating the characteristic impedance of the ear canal in situ. However, an oblique insertion of the ear probe into a uniform waveguide prevents accurately estimating its characteristic impedance using existing time-domain methods. This is caused by the non-uniformity immediately in front of the ear probe when inserted at an oblique angle, resembling a short horn loading, and introduces errors into the ear-canal reflectance. This paper gives an overview of the influence of oblique ear-probe insertions and shows how they can be detected and quantified by estimating the characteristic impedance using multiple truncation frequencies, i.e., limiting the utilized frequency range. Additionally, a method is proposed to compensate for the effects on reflectance of an oblique ear-probe insertion into a uniform waveguide. The incident impedance of the horn loading is estimated, i.e., were the uniform waveguide anechoic, which replaces the characteristic impedance when calculating reflectance. The method can compensate for an oblique ear-probe insertion into a uniform occluded-ear simulator and decrease the dependency of reflectance on insertion depth in an ear canal. However, more research is required to further assess the method in ear canals.

1.
Allen
,
J. B.
(
1986
).
“Measurement of eardrum acoustic impedance,”
in
Peripheral Auditory Mechanisms
, edited by
J.
Allen
,
J.
Hall
,
A.
Hubbard
,
S.
Neely
, and
A.
Tubis
(
Springer-Verlag
,
New York
), pp.
44
51
.
2.
Benade
,
A. H.
(
1988
). “
Equivalent circuits for conical waveguides
,”
J. Acoust. Soc. Am.
83
,
1764
1769
.
3.
Brass
,
D.
, and
Locke
,
A.
(
1997
). “
The effect of the evanescent wave upon acoustic measurements in the human ear canal
,”
J. Acoust. Soc. Am.
101
,
2164
2175
.
4.
Caussé
,
R.
,
Kergomard
,
J.
, and
Lurton
,
X.
(
1984
). “
Input impedance of brass musical instruments—Comparison between experiment and numerical models
,”
J. Acoust. Soc. Am.
75
,
241
254
.
5.
Charaziak
,
K. K.
, and
Shera
,
C. A.
(
2017
). “
Compensating for ear-canal acoustics when measuring otoacoustic emissions
,”
J. Acoust. Soc. Am.
141
,
515
531
.
6.
Ellison
,
J. C.
,
Gorga
,
M.
,
Cohn
,
E.
,
Fitzpatrick
,
D.
,
Sanford
,
C. A.
, and
Keefe
,
D. H.
(
2012
). “
Wideband acoustic transfer functions predict middle-ear effusion
,”
Laryngoscope
122
,
887
894
.
7.
Feeney
,
M. P.
, and
Keefe
,
D. H.
(
2001
). “
Estimating the acoustic reflex threshold from wideband measures of reflectance, admittance, and power
,”
Ear Hear.
22
,
316
332
.
8.
Fletcher
,
N. H.
,
Smith
,
J.
,
Tarnopolsky
,
A. Z.
, and
Wolfe
,
J.
(
2005
). “
Acoustic impedance measurements—Correction for probe geometry mismatch
,”
J. Acoust. Soc. Am.
117
,
2889
2895
.
9.
Humphrey
,
R.
(
2014
). www.playrec.co.uk (Last viewed 5 June 2019).
10.
Keefe
,
D. H.
, and
Benade
,
A. H.
(
1981
). “
Impedance measurement source and microphone proximity effects
,”
J. Acoust. Soc. Am.
69
,
1489
1495
.
11.
Keefe
,
D. H.
,
Folsom
,
R. C.
,
Gorga
,
M. P.
,
Vohr
,
B. R.
,
Bulen
,
J. C.
, and
Norton
,
S. J.
(
2000
). “
Identification of neonatal hearing impairment: Ear-canal measurements of acoustic admittance and reflectance in neonates
,”
Ear Hear.
21
,
443
461
.
12.
Keefe
,
D. H.
,
Ling
,
R.
, and
Bulen
,
J. C.
(
1992
). “
Method to measure acoustic impedance and reflection coefficient
,”
J. Acoust. Soc. Am.
91
,
470
485
.
13.
Keefe
,
D. H.
,
Sanford
,
C. A.
,
Ellison
,
J. C.
,
Fitzpatrick
,
D. F.
, and
Gorga
,
M. P.
(
2012
). “
Wideband aural acoustic absorbance predicts conductive hearing loss in children
,”
Int. J. Audiol.
51
,
880
891
.
14.
Lewis
,
J. D.
(
2018
). “
The area discontinuity between probe and ear canal as a source of power-reflectance measurement-location variability
,”
J. Acoust. Soc. Am.
143
,
1106
1116
.
15.
Lewis
,
J. D.
,
McCreery
,
R. W.
,
Neely
,
S. T.
, and
Stelmachowicz
,
P. G.
(
2009
). “
Comparison of in-situ calibration methods for quantifying input to the middle ear
,”
J. Acoust. Soc. Am.
126
,
3114
3124
.
16.
McCreery
,
R. W.
,
Pittman
,
A.
,
Lewis
,
J.
,
Neely
,
S. T.
, and
Stelmachowicz
,
P. G.
(
2009
). “
Use of forward pressure level to minimize the influence of acoustic standing waves during probe-microphone hearing-aid verification
,”
J. Acoust. Soc. Am.
126
,
15
24
.
17.
Merchant
,
G. R.
,
Röösli
,
C.
,
Niesten
,
M. E. F.
,
Hamade
,
M. A.
,
Lee
,
D. J.
,
McKinnon
,
M. L.
,
Ulku
,
C. H.
,
Rosowski
,
J. J.
,
Merchant
,
S. N.
, and
Nakajima
,
H. H.
(
2015
). “
Power reflectance as a screening tool for the diagnosis of superior semicircular canal dehiscence
,”
Otol. Otolaryngol.
36
,
172
177
.
18.
Nørgaard
,
K. R.
,
Fernandez-Grande
,
E.
, and
Laugesen
,
S.
(
2017a
). “
Compensating for evanescent modes and estimating characteristic impedance in waveguide acoustic impedance measurements
,”
J. Acoust. Soc. Am.
142
,
3497
3509
.
19.
Nørgaard
,
K. R.
,
Fernandez-Grande
,
E.
, and
Laugesen
,
S.
(
2017b
). “
Incorporating evanescent modes and flow losses into reference impedances in acoustic Thévenin calibration
,”
J. Acoust. Soc. Am.
142
,
3013
3024
.
20.
Nørgaard
,
K. R.
,
Neely
,
S. T.
, and
Rasetshwane
,
D. M.
(
2018
). “
Quantifying undesired parallel components in Thévenin-equivalent acoustic source parameters
,”
J. Acoust. Soc. Am.
143
,
1491
1503
.
21.
Piskorski
,
P.
,
Keefe
,
D. H.
,
Simmons
,
J. L.
, and
Gorga
,
M. P.
(
1999
). “
Prediction of conductive hearing loss based on acoustic ear-canal response using a multivariate clinical decision theory
,”
J. Acoust. Soc. Am.
105
,
1749
1764
.
22.
Rasetshwane
,
D. M.
, and
Neely
,
S. T.
(
2011
). “
Inverse solution of ear-canal area function from reflectance
,”
J. Acoust. Soc. Am.
130
,
3873
3881
.
23.
Scheperle
,
R. A.
,
Goodman
,
S. S.
, and
Neely
,
S. T.
(
2011
). “
Further assessment of forward pressure level for in situ calibration
,”
J. Acoust. Soc. Am.
130
,
3882
3892
.
24.
Scheperle
,
R. A.
,
Neely
,
S. T.
,
Kopun
,
J. G.
, and
Gorga
,
M. P.
(
2008
). “
Influence of in situ, sound-level calibration on distortion-product otoacoustic emission variability
,”
J. Acoust. Soc. Am.
124
,
288
300
.
25.
Souza
,
N. N.
,
Dhar
,
S.
,
Neely
,
S. T.
, and
Siegel
,
J. H.
(
2014
). “
Comparison of nine methods to estimate ear-canal stimulus levels
,”
J. Acoust. Soc. Am.
136
,
1768
1787
.
26.
Voss
,
S. E.
, and
Allen
,
J. B.
(
1994
). “
Measurement of acoustic impedance and reflectance in the human ear canal
,”
J. Acoust. Soc. Am.
95
,
372
384
.
27.
Withnell
,
R. H.
,
Jeng
,
P. S.
,
Waldvogel
,
K.
,
Morgenstein
,
K.
, and
Allen
,
J. B.
(
2009
). “
An in situ calibration for hearing thresholds
,”
J. Acoust. Soc. Am.
125
,
1605
1611
.
You do not currently have access to this content.