This paper presents a wave-based numerical scheme based on a spectral element method, coupled with an implicit-explicit Runge-Kutta time stepping method, for simulating room acoustics in the time domain. The scheme has certain features which make it highly attractive for room acoustic simulations, namely (a) its low dispersion and dissipation properties due to a high-order spatio-temporal discretization; (b) a high degree of geometric flexibility, where adaptive, unstructured meshes with curvilinear mesh elements are supported; and (c) its suitability for parallel implementation on modern many-core computer hardware. A method for modelling locally reacting, frequency dependent impedance boundary conditions within the scheme is developed, in which the boundary impedance is mapped to a multipole rational function and formulated in differential form. Various numerical experiments are presented, which reveal the accuracy and cost-efficiency of the proposed numerical scheme.

1.
S.
Pelzer
,
L.
Aspock
,
D.
Schroder
, and
M.
Vorlander
, “
Integrating real-time room acoustics simulation into a CAD modeling software to enhance the architectural design process
,”
Buildings
4
(
2
),
113
138
(
2014
).
2.
R.
Mehra
,
A.
Rungta
,
A.
Golas
,
M.
Lin
, and
D.
Manocha
, “
WAVE: Interactive wave-based sound propagation for virtual environments
,”
IEEE Trans. Vis. Comp. Graph.
21
(
4
),
434
442
(
2015
).
3.
N.
Raghuvanshi
,
A.
Allen
, and
J.
Snyder
, “
Numerical wave simulation for interactive audio-visual applications
,”
J. Acoust. Soc. Am.
139
(
4
),
2008
2009
(
2016
).
4.
M.
Aretz
and
M.
Vorlander
, “
Combined wave and ray based room acoustic simulations of audio systems in car passenger compartments, Part I: Boundary and source data
,”
Appl. Acoust.
76
,
82
99
(
2014
).
5.
V.
Valimaki
,
J. D.
Parker
,
L.
Savioja
,
J. O.
Smith
, and
J. S.
Abel
, “
Fifty years of artificial reverberation
,”
IEEE Trans. Audio, Speech, Lang. Proc.
20
(
5
),
1421
1448
(
2012
).
6.
J.
Xia
,
B.
Xu
,
S.
Pentony
,
J.
Xu
, and
J.
Swaminathan
, “
Effects of reverberation and noise on speech intelligibility in normal-hearing and aided hearing-impaired listeners
,”
J. Acoust. Soc. Am.
143
(
3
),
1523
1533
(
2018
).
7.
M. R.
Schroeder
and
K. H.
Kuttruff
, “
On frequency response curves in rooms. Comparison of experimental, theoretical, and Monte Carlo results for the average frequency spacing between maxima
,”
J. Acoust. Soc. Am.
34
(
1
),
76
80
(
1962
).
8.
A.
Krokstad
,
S.
Strom
, and
S.
Soersdal
, “
Calculating the acoustical room response by the use of a ray tracing technique
,”
J. Sound Vib.
8
(
1
),
118
125
(
1968
).
9.
L.
Savioja
and
U. P.
Svensson
, “
Overview of geometrical room acoustic modeling techniques
,”
J. Acoust. Soc. Am.
138
(
2
),
708
730
(
2015
).
10.
A.
Kulowski
, “
Algorithmic representation of the ray tracing technique
,”
Appl. Acoust.
18
(
6
),
449
469
(
1985
).
11.
H.
Lee
and
B.-H.
Lee
, “
An efficient algorithm for the image model technique
,”
Appl. Acoust.
24
(
2
),
87
115
(
1988
).
12.
S.
Laine
,
S.
Siltanen
,
T.
Lokki
, and
L.
Savioja
, “
Accelerated beam tracing algorithm
,”
Appl. Acoust.
70
(
1
),
172
181
(
2009
).
13.
Y. W.
Lam
, “
Issues for computer modelling of room acoustics in non-concert hall settings
,”
Acoust. Sci. Tech.
26
(
2
),
145
155
(
2005
).
14.
J.
LoVetri
,
D.
Mardare
, and
G.
Soulodre
, “
Modeling of the seat dip effect using the finite-difference time-domain method
,”
J. Acoust. Soc. Am.
100
(
4
),
2204
2212
(
1996
).
15.
T. J.
Cox
and
P.
D'Antonio
.
Acoustic Absorbers and Diffusers: Theory, Design and Application
, 3rd ed. (
Routledge Taylor and Francis
,
Oxfordshire
,
2016
), Chap. 13.
16.
M. L. S.
Vercammen
, “
Sound concentration caused by curved surfaces
,” Ph.D. thesis,
Eindhoven University of Technology
,
The Netherlands
,
2011
.
17.
M.
Vorlander
, “
Computer simulations in room acoustics: Concepts and uncertainties
,”
J. Acoust. Soc. Am.
133
(
3
),
1203
1213
(
2013
).
18.
D.
Botteldooren
, “
Finite-difference time-domain simulation of low-frequency room acoustic problems
,”
J. Acoust. Soc. Am.
98
(
6
),
3302
3308
(
1995
).
19.
J. A.
Hargreaves
and
T. J.
Cox
, “
A transient boundary element method model of Schroeder diffuser scattering using well mouth impedance
,”
J. Acoust. Soc. Am.
124
(
5
),
2942
2951
(
2008
).
20.
T.
Okuzono
,
T.
Otsuru
,
R.
Tomiku
, and
N.
Okamoto
, “
A finite-element method using dispersion reduced spline elements for room acoustics simulation
,”
Appl. Acoust.
79
,
1
8
(
2014
).
21.
R.
Mehra
,
N.
Raghuvanshi
,
L.
Antani
,
A.
Chandak
,
S.
Curtis
, and
D.
Manocha
, “
Wave-based sound propagation in large open scenes using an equivalent source formulation
,”
ACM Trans. Graph.
32
(
2
),
1
13
(
2013
).
22.
S.
Bilbao
, “
Modeling of complex geometries and boundary conditions in finite difference/finite volume time domain room acoustics simulation
,”
IEEE Trans. Audio, Speech, Lang. Proc.
21
(
7
),
1524
1533
(
2013
).
23.
M.
Hornikx
,
T.
Krijnen
, and
L.
van Harten
, “
openPSTD: The open source pseudospectral time-domain method for acoustic propagation
,”
Comp. Phys. Commun.
203
,
298
308
(
2016
).
24.
M.
Vorlander
,
Auralization: Fundamentals of Acoustics, Modelling, Simulation, Algorithms and Acoustic Virtual Reality
(
Springer
,
Berlin, Heidelberg
,
2008
), Chap. 10.
25.
L.
Savioja
, “
Real-time 3D finite-difference time-domain simulation of low- and mid-frequency room acoustics
,” in
13th International Conference on Digital Audio Effects
(
2010
), Vol.
1
.
26.
A.
Southern
,
S.
Siltanen
,
D. T.
Murphy
, and
L.
Savioja
, “
Room impulse response synthesis and validation using a hybrid acoustic model
,”
IEEE Trans. Audio, Speech, Lang. Proc.
21
(
9
),
1940
1952
(
2013
).
27.
R. P.
Munoz
and
M.
Hornikx
, “
Hybrid Fourier pseudospectral/discontinuous Galerkin time-domain method for wave propagation
,”
J. Comp. Phys.
348
,
416
432
(
2017
).
28.
H.-O.
Kreiss
and
J.
Oliger
, “
Comparison of accurate methods for the integration of hyperbolic equations
,”
Tellus
24
(
3
),
199
215
(
1972
).
29.
J.
van Mourik
and
D.
Murphy
, “
Explicit higher-order FDTD schemes for 3D room acoustic simulation
,”
IEEE Trans. Audio, Speech, Lang. Proc.
22
(
12
),
2003
2011
(
2014
).
30.
B.
Hamilton
and
S.
Bilbao
, “
FDTD methods for 3-D room acoustics simulation with high-order accuracy in space and time
,”
IEEE Trans. Audio, Speech, Lang. Proc.
25
(
11
),
2112
2124
(
2017
).
31.
A. T.
Patera
, “
A spectral element method for fluid dynamics: Laminar flow in a channel expansion
,”
J. Comp. Phys.
54
(
3
),
468
488
(
1984
).
32.
G. E.
Karniadakis
and
S. J.
Sherwin
,
Spectral/hp Element Methods for Computational Fluid Dynamics
, 2nd ed. (
Oxford University Press
,
Oxford
,
2005
).
33.
D.
Kopriva
,
Implementing Spectral Methods for Partial Differential Equations
(
Springer
,
Dordrecht
,
2009
).
34.
A. P.
Engsig-Karup
,
C.
Eskilsson
, and
D.
Bigoni
, “
A stabilised nodal spectral element method for fully nonlinear water waves
,”
J. Comp. Phys.
318
,
1
21
(
2016
).
35.
G.
Seriani
, “
A parallel spectral element method for acoustic wave modeling
,”
J. Comp. Acoust.
05
(
01
),
53
69
(
1997
).
36.
S.
Airiau
,
M.
Azaiez
,
F. B.
Belgacem
, and
R.
Guivarch
, “
Parallelization of spectral element methods
,” in
High Performance Computing for Computational Science—VECPAR 2002
, edited by
J. M. L. M.
Palma
,
A. A.
Sousa
,
J.
Dongarra
, and
V.
Hernandez
(
Springer
,
Berlin, Heidelberg
,
2003
), pp.
392
403
.
37.
C. A.
Kennedy
and
M. H.
Carpenter
, “
Additive Runge-Kutta schemes for convection-diffusion-reaction equations
,”
Appl. Numer. Math.
44
(
1
),
139
181
(
2003
).
38.
M.
Hornikx
, “
Ten questions concerning computational urban acoustics
,”
Build. Environ.
106
,
409
421
(
2016
).
39.
S.
Bilbao
,
B.
Hamilton
,
J.
Botts
, and
L.
Savioja
, “
Finite volume time domain room acoustics simulation under general impedance boundary conditions
,”
IEEE Trans. Audio, Speech, Lang. Proc.
24
(
1
),
161
173
(
2016
).
40.
C.-W.
Shu
, “
Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws
,” in
Advanced Numerical Approximation of Nonlinear Hyperbolic Equations
, edited by
A.
Quarteroni
(
Springer
,
Berlin, Heidelberg
,
1998
), pp.
325
432
.
41.
C.-W.
Shu
, “
High-order finite difference and finite volume WENO schemes and discontinuous Galerkin methods for CFD
,”
Int. J. Comp. Fluid Dyn.
17
(
2
),
107
118
(
2003
).
42.
N.
Atalla
and
F.
Sgard
,
Finite Element and Boundary Methods in Structural Acoustics and Vibration
, 1st ed. (
CRC Press
,
Boca Raton
,
2015
), Chap. 7.
43.
I.
Babuska
and
B. Q.
Guo
, “
The h, p and h-p version of the finite element method; basis theory and applications
,”
Adv. Eng. Softw.
15
(
3
),
159
174
(
1992
).
44.
J. S.
Hesthaven
and
T.
Warburton
,
Nodal Discontinuous Galerkin Methods—Algorithms, Analysis, and Applications
(
Springer
,
New York
,
2008
), Chap. 1, 3, 4, 6, 9, 10.
45.
A.
Richard
,
E.
Fernandez-Grande
,
J.
Brunskog
, and
C.-H.
Jeong
, “
Estimation of surface impedance at oblique incidence based on sparse array processing
,”
J. Acoust. Soc. Am.
141
(
6
),
4115
4125
(
2017
).
46.
Y.
Miki
, “
Acoustical properties of porous materials—Modifications of Delany-Bazley models
,”
J. Acoust. Soc. Jpn.
11
(
1
),
19
24
(
1990
).
47.
R.
Troian
,
D.
Dragna
,
C.
Bailly
, and
M.-A.
Galland
, “
Broadband liner impedance eduction for multimodal acoustic propagation in the presence of a mean flow
,”
J. Sound Vib.
392
,
200
216
(
2017
).
48.
P.
Cazeaux
and
J. S.
Hesthaven
, “
Multiscale modelling of sound propagation through the lung parenchyma
,”
ESAIM: M2AN
48
(
1
),
27
52
(
2014
).
49.
A.
Taflove
and
S. C.
Hagness
,
Computational Electrodynamics: The Finite-Difference Time-Domain Method
, 3rd ed. (
Artech House, Inc.
,
Boston
,
2013
), Chap. 9.
50.
M.
Dubiner
, “
Spectral methods on triangles and other domains
,”
J. Sci. Comput.
6
(
4
),
345
390
(
1991
).
51.
T.
Okuzono
,
T.
Yoshida
,
K.
Sakagami
, and
T.
Otsuru
, “
An explicit time-domain finite element method for room acoustics simulations: Comparison of the performance with implicit methods
,”
Appl. Acoust.
104
,
76
84
(
2016
).
52.
M.
Ainsworth
and
H.
Wajid
, “
Dispersive and dissipative behavior of the spectral element method
,”
SIAM J. Numer. Anal.
47
(
5
),
3910
3937
(
2009
).
53.
S.
Sherwin
, “
Dispersion analysis of the continuous and discontinuous Galerkin formulations
,” in
Discontinuous Galerkin Methods
, edited by
B.
Cockburn
,
G. E.
Karniadakis
, and
C.-W.
Shu
(
Springer
,
Berlin, Heidelberg
,
2000
), pp.
425
431
.
54.
G.
Gassner
and
D.
Kopriva
, “
A comparison of the dispersion and dissipation errors of Gauss and Gauss-Lobatto discontinuous Galerkin spectral element methods
,”
SIAM J. Sci. Comp.
33
(
5
),
2560
2579
(
2011
).
55.
G.
Seriani
and
S. P.
Oliveira
, “
DFT modal analysis of spectral element methods for acoustic wave propagation
,”
J. Comp. Acoust.
16
(
04
),
531
561
(
2008
).
56.
Fang Q.
Hu
,
M. Y.
Hussaini
, and
P.
Rasetarinera
, “
An analysis of the discontinuous Galerkin method for wave propagation problems
,”
J. Comput. Phys.
151
(
2
),
921
946
(
1999
).
57.
S. P.
Oliveira
, “
On multiple modes of propagation of high-order finite element methods for the acoustic wave equation
,” in
Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2016
, edited by
M. L.
Bittencourt
,
N. A.
Dumont
, and
J. S.
Hesthaven
(
Springer
,
Switzerland
,
2017
), pp.
509
518
.
58.
G.
Seriani
and
S. P.
Oliveira
, “
Optimal blended spectral-element operators for acoustic wave modeling
,”
Geophysics
72
(
5
),
SM95
SM106
(
2007
).
59.
Y.
Geng
,
G.
Qin
,
J.
Zhang
,
W.
He
,
Z.
Bao
, and
Y.
Wang
, “
Space-time spectral element method solution for the acoustic wave equation and its dispersion analysis
,”
Acoust. Sci. Technol.
38
(
6
),
303
313
(
2017
).
60.
J.
Yu
,
C.
Yan
, and
Z.
Jiang
, “
Effects of artificial viscosity and upwinding on spectral properties of the discontinuous Galerkin method
,”
Comp. Fluids
175
,
276
292
(
2018
).
61.
J.
Saarelma
,
J.
Botts
,
B.
Hamilton
, and
L.
Savioja
, “
Audibility of dispersion error in room acoustic finite-difference time-domain simulation as a function of simulation distance
,”
J. Acoust. Soc. Am.
139
(
4
),
1822
1832
(
2016
).
62.
C. A.
Felippa
,
Q.
Guo
, and
K. C.
Park
, “
Mass matrix templates: General description and 1D examples
,”
Arch. Comput. Meth. Eng.
22
(
1
),
1
65
(
2015
).
63.
I.
Fried
and
D. S.
Malkus
, “
Finite element mass matrix lumping by numerical integration with no convergence rate loss
,”
Int. J. Sol. Struct.
11
(
4
),
461
466
(
1975
).
64.
S.
Jund
and
S.
Salmon
, “
Arbitrary high-order finite element schemes and high-order mass lumping
,”
Int. J. Appl. Math. Comp. Sci.
17
(
3
),
375
393
(
2007
).
65.
F.
Jacobsen
and
P.
Juhl
.,
Fundamentals of General Linear Acoustics
(
Wiley
,
West Sussex
,
2013
), Chap. 7.
66.
S.
Sakamoto
, “
Phase-error analysis of high-order finite difference time domain scheme and its influence on calculation results of impulse response in closed sound field
,”
Acoust. Sci. Technol.
28
(
5
),
295
309
(
2007
).
67.
S.-I.
Thomasson
, “
Reflection of waves from a point source by an impedance boundary
,”
J. Acoust. Soc. Am.
59
(
4
),
780
785
(
1976
).
68.
B.
Gustavsen
and
A.
Semlyen
, “
Rational approximation of frequency domain responses by vector fitting
,”
IEEE Trans. Power Delivery
14
(
3
),
1052
1061
(
1999
).
69.
P.-O.
Persson
and
G.
Strang
, “
A simple mesh generator in MATLAB
,”
SIAM Rev.
46
(
2
),
329
345
(
2004
).
You do not currently have access to this content.